PUBLICATIONS
Category
Year

International Journal Paper

  1. 1. *Jun Izawa, Noriyuki Higo, Yumi Murata, Accounting for the valley of recovery during post-stroke rehabilitation training via a model-based analysis of macaque manual dexterity, Frontiers in rehabilitation sciences, 2022, 3, 1042912, reviewed BibTeX
  2. 2. Abekawa N, Doya K, *Gomi H, Body and visual instabilities functionally modulate implicit reaching corrections, iScience, 2023, 26, 1, 105751 BibTeX
  3. 3. Hamaguchi K, Aoki-Takahashi H, Watanabe D, Prospective and retrospective values integrated in frontal cortex drive predictive choice, Proceedings of the National Academy of Sciences, 2022, 119, e2206067119, reviewed# BibTeX
  4. 4. Cheng, D., Lee, J.S., Brown, M., Ebert, M.S., McGrath, P.T., Tomioka, M., Iino, Y., and *Bargmann, C.I., Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning, Cell Rep, 2022, 41, 8, 111685, reviewed BibTeX
  5. 5. Tanaka H, Shou Q, Kiyonari T, Matsuda T, Sakagami M, Takagishi H*, Right dorsolateral prefrontal cortex regulates default prosociality preference, Cerebral Cortex, 2022, 33, 1, 5420-5425, reviewed BibTeX
  6. 6. Taisei Sugiyama, Keita Nakae, *Jun Izawa, Transcranial magnetic stimulation on the dorsal premotor cortex facilitates human visuomotor adaptation, NeuroReport, 2022, 33, 16, 723-727, reviewed BibTeX
  7. 7. *Tatsuki Kuribayashi, Yohei Oseki, Ana Brassard, Kentaro Inui, Context limitations make neural language models more human-like, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022, Long Paper, 10421-10436, reviewed BibTeX
  8. 8. *Ryo Yoshida, Yohei Oseki, Composition, attention, or both?, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022, Findings, 5822-5834, reviewed BibTeX
  9. 9. Mabardi, L., Sato, H., Toyoshima, Y., *Iino, Y., and *Kunitomo, H., Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans, Neurosci Res, 2023, 186, 33-42, reviewed BibTeX
  10. 10. Yoshida R, Takamori M, Matsumoto H, *Miura K, Tropical support vector machines: Evaluations and extension to function spaces., Neural Networks, 2023, 157, 77-89, reviewed BibTeX
  11. 11. *Lalande F, Trani A, Predicting the stability of hierarchical triple systems with convolutional neural networks, The Astrophysical Journal, 2022, 938, 18, Research article BibTeX
  12. 12. *Ito S, Kimura T, Gomi H, Attribution of sensory prediction error to perception of muscle fatigue, Scientific Reports, 2022, 12, 1, 16708, https://www.nature.com/articles/s41598-022-20765-9 BibTeX
  13. 13. Fermin ASR*, Kiyonari T, Matsumoto Y, Takagishi H, Li Y, Kanai R, Sakagami M, Akaishi R, Ichikawa N, Takamura M, Yokoyama S, Machizawa MG, Chan HL, Matani A, Yamawaki S, Okada G, Okamoto Y, Yamagishi T, The neuroanatomy of social trust predicts depression vulnerability, Scientific Reports, 2022, 12, 1, reviewed BibTeX
  14. 14. Yihao Wu, Masahiko Morita, *Jun Izawa, Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning, Neural Networks, 2022, 154, 109-121, reviewed BibTeX
  15. 15. *De Havas J, Ito S, Bestmann S, Gomi H, Neural dynamics of illusory tactile pulling sensations, iScience, 2022, 25, 9, 105018, https://linkinghub.elsevier.com/retrieve/pii/S2589004222012901 BibTeX
  16. 16. Lucas Rebelo Dal’Bello, *Jun Izawa, Computational role of exploration noise in error-based de novo motor learning, Neural Networks, 2022, 153, 349-372, reviewed BibTeX
  17. 17. *Tatsuya Matsushima, Yuki Noguchi, Jumpei Arima, Toshiki Aoki, Yuki Okita, Yuya Ikeda, Koki Ishimoto, Shohei Taniguchi, Yuki Yamashita, Shoichi Seto, Shixiang Shane Gu, Yusuke Iwasawa, Yutaka Matsuo., World robot challenge 2020 – partner robot: a data-driven approach for room tidying with mobile manipulator, Advanced Robotics, 2022, 36, 17-18, 850-869, reviewed BibTeX
  18. 18. *Doya K (Guest Editors), Friston K, Sugiyama M,Tenenbaum J, Neural Networks special issue on Artificial Intelligence and Brain Science, Neural Networks, 2022, 155, 328-329, Editorial BibTeX
  19. 19. *Hongjie Bi and Tomoki Fukai, Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators., Chaos, 2022, 32, 83125, reviewed BibTeX
  20. 20. *Bi H, Fukai T, Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators., Chaos, 2022, 32, 83125, reviewed BibTeX
  21. 21. *Ozawa T+, Kaseda K+, Ichitani Y, Yamada K., Caffeine facilitates extinction of auditory fear conditioning in rats., Neuropsychopharmacology Reports, 2022, 42, 4, 521-525, reviewed BibTeX
  22. 22. *Rikunari Sagara, Ryo Taguchi, Akira Taniguchi, Tadahiro Taniguchi, Automatic Selection of Coordinate Systems for Learning Relative and Absolute Spatial Concepts, Frontiers in Robotics and AI, 2022, 9 BibTeX
  23. 23. Kei Oyama+, Yukiko Hori+, Koki Mimura+, Yuji Nagai, Mark AG Eldridge, Richard C Saunders, Naohisa Miyakawa, Toshiyuki Hirabayashi, Yuki Hori, Ken-ichi Inoue, Tetsuya Suhara, Masahiko Takada, Makoto Higuchi, Barry J Richmond, Takafumi Minamimoto*, Chemogenetic disconnection between the orbitofrontal cortex and the rostromedial caudate nucleus disrupts motivational control of goal-directed action, Journal of Neuroscience, 2022, 42, 32, 6267-6275, reviewed BibTeX
  24. 24. *Hamasaki Y, Pionnié-Dax N, Dorard G, Tajan N, Hikida T., Preliminary study of the social withdrawal (hikikomori) spectrum in French adolescents: focusing on the differences in pathology and related factors compared with Japanese adolescents., BMC Psychiatry, 2022, 22, 1, 477, reviewed BibTeX
  25. 25. Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, *Hikida T., Importin α3 (KPNA3) deficiency augments effortful reward-seeking behavior in mice., Frontiers in Neuroscience, 2022, 16, 905991, reviewed BibTeX
  26. 26. *Macpherson T+, Kim JY+ and *Hikida T., Nucleus accumbens core dopamine D2 receptor-expressing neurons control reversal learning but not set-shifting in behavioral flexibility in male mice., Frontiers in Neuroscience, 2022, 16, 885380, reviewed BibTeX
  27. 27. *Suzuki S, Takeda S, Makishima N, Ando A, Shouno H, IEEE Access, 2022, 10, 68384-68396 BibTeX
  28. 28. *Toshitake Asabuki, Prajakta Kokate and Tomoki Fukai, Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data., PLOS Computational Biology, 2022, 18, e1010214, reviewed BibTeX
  29. 29. *TAsabuki T, Kokate P, Fukai T, Neural circuit mechanisms of hierarchical sequence learning tested on large-scale recording data., PLOS Computational Biology, 2022, 18, e1010214, reviewed BibTeX
  30. 30. Hiroki, S., Yoshitane, H., Mitsui, H., Sato, H., Umatani, C., Kanda, S., Fukada, Y., and *Iino, Y., Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans, Nat Commun, 2022, 13, 1, e2928, reviewed BibTeX
  31. 31. Oguchi M, Sakagami M*, Dissecting the Prefrontal Network With Pathway-Selective Manipulation in the Macaque Brain—A Review, Frontiers in Neuroscience, 2022, 16, reviewed BibTeX
  32. 32. *Doya K, Ema A, Kitano H, Sakagami M, Russell S, Social impact and governance of AI and neurotechnologies, Neural Networks, 2022, 152, 542-554, Perspective article BibTeX
  33. 33. *Abekawa N, Ito S, Gomi H, Gaze-specific motor memories for hand-reaching, Current Biology, 2022, S0960982222007011., open access: https://doi.org/10.1016/j.cub.2022.04.065 BibTeX
  34. 34. Doya, K*., Ema, A., Kitano, H., Sakagami, M. Russell, S., Social impact and governance of AI and neurotechnologies, Neural Networks, 2022, 152, 542-554, reviewed BibTeX
  35. 35. Mori, K., Koebis, M., Nakao, K., Kobayashi, S., Kiyama, Y., Watanabe, M., Manabe, T., Iino, Y., and *Aiba, A., Loss of calsyntenin paralogs disrupts interneuron stability and mouse behavior, Mol Brain, 2022, 15, 1, 23, reviewed BibTeX
  36. 36. Uchida Y, *Hikida T, *Yamashita Y, Computational mechanisms of osmoregulation: a reinforcement learning model for sodium appetite., Frontiers in Neuroscience, 2022, 16, 857009, reviewed&# BibTeX
  37. 37. *Giorgia Dellaferrera, Toshitake Asabuki and Tomoki Fukai, Modeling the Repetition-based Recovering of Acoustic and Visual Sources with Dendritic Neurons., Frontiers in Neuroscience, 2022, 16, 855753, reviewed BibTeX
  38. 38. *Dellaferrera G, Asabuki T, Fukai T, Modeling the Repetition-based Recovering of Acoustic and Visual Sources with Dendritic Neurons., Frontiers in Neuroscience, 2022, 16, 855753, reviewed BibTeX
  39. 39. Matsuo Y, Lecun Y, Sahani M, Precup D, Silver D, Sugiyama M, Uchibe E, *Morimoto, J, Deep learning, reinforcement learning, and world models, Neural Networks, 2022, 152, 267-275, reviewed BibTeX
  40. 40. *Ito J, Joana C, Yamane Y, Fujita I, Tamura H, Maldonado P, Grün S, Latency shortening with enhanced sparseness and responsiveness in V1 during active visual sensing, Scientific Reports, 2022, 12, 6021, Research BibTeX
  41. 41. *Akira Taniguchi, Ayako Fukawa, Hiroshi Yamakawa, Hippocampal formation-inspired probabilistic generative model, Neural Networks, 2022, 151, 317-335, https://doi.org/10.1080/01691864.2022.2029762 BibTeX
  42. 42. Ike, Y., *Tomioka, M., and *Iino, Y., Involvement of HECT-type E3 ubiquitin ligase genes in salt chemotaxis learning in Caenorhabditis elegans, Genetics, 2022, 220, 4, iyac025, reviewed BibTeX
  43. 43. *Fehring DJ, Pascoe AJ, Haque ZZ, Samandra R, Yokoo S, Abe H, Rosa MGP, Tanaka K, Yamamori T, Mansouri FA., Dimension of visual information interacts with working memory in monkeys and humans, Scientific Report, 2022, 12, 1, 5335, reviewed BibTeX
  44. 44. *Tadahiro Taniguchi, Hiroshi Yamakawa, Takayuki Nagai, Kenji Doya, Masamichi Sakagami, Masahiro Suzuki, Tomoaki Nakamura, Akira Taniguchi, A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots, Neural Networks, 2022, 150, 293-312, https://doi.org/10.1016/j.neunet.2022.02.026 BibTeX
  45. 45. Nishina K, Shou Q, Takahashi H, Sakagami M, Inoue-Murayama M, Takagishi H*, Association Between Polymorphism (5-HTTLPR) of the Serotonin Transporter Gene and Behavioral Response to Unfair Distribution, Frontiers in Behavioral Neuroscience, 2022, 16, reviewed BibTeX
  46. 46. Hiroyuki Miyawaki, Kenji Mizuseki, De novo inter-regional coactivations of preconfigured local ensembles support memory, Nature Communications, 2022, 13, 1, 1272 BibTeX
  47. 47. *Taniguchi T, Yamakawa H, Nagai T, Doya K, Sakagami M, Suzuki M, Nakamura T, Taniguchi A, A whole brain probabilistic generative model: Toward realizing cognitive architectures for developmental robots, Neural Networks, 2021, 150, 293-312, Review BibTeX
  48. 48. *Benucci, A., Motor-related signals support localization invariance for stable visual perception, Plos Comp. Biol., 2022, Accepted BibTeX
  49. 49. *Masahiro Suzuki, Yutaka Matsuo, A survey of multimodal deep generative models, Advanced Robotics, 2022, 36, 261–278, reviewed BibTeX
  50. 50. Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Shaohong L, Shide M, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, *Hanada R., Vrk2 deficiency elicits aggressive behavior in female zebrafish., Genes to Cells, 2022, 27, 4, 254-265, reviewed BibTeX
  51. 51. Jaaro-Peled H, Kumar S, Hughes D, Sumitomo A, Kim S-H, Zoubovsky S, Hirota-Tsuyada Y, Zala D, Bruyere J, Katz B, Huang B, Flores R, Narayan S, Hou Z, Economides A, Hikida T, Wetsel W, Deisseroth K, Mori S, Brandon N, Tanaka M, Ishizuka K, Houslay M, Saudou F, *Dzirasa K, *Sawa A, *Tomoda T., Regulation of sensorimotor gating via Disc1/Huntingtin-mediated Bdnf transport in the cortico-striatal circuit., Molecular Psychiatry, 2022, 27, 3, 1805-1815, reviewed BibTeX
  52. 52. *Yuki Katsumata, Akinori Kanechika, Akira Taniguchi, Lotfi El Hafi, Yoshinobu Hagiwara, and Tadahiro Taniguchi, Map completion from partial observation using the global structure of multiple environmental maps, Advanced Robotics, 2022, 36, 279-290, DOI: 10.1080/01691864.2022.2029762 BibTeX
  53. 53. *Ryo Yoshida, Yohei Oseki, Learning argument structures with recurrent neural network grammars, Proceedings of the Society for Computation in Linguistics (SCiL), 2022, Long Paper, 101-111, reviewed BibTeX
  54. 54. Hiroki, S., and Iino, Y., The redundancy and diversity between two novel PKC isotypes that regulate learning in Caenorhabditis elegans, Proc Natl Acad Sci U S A, 2022, 119, 3, e2106974119, reviewed BibTeX
  55. 55. *Matsumoto M, Abe H, Tanaka K, Matsumoto K, Different types of uncertainty distinguished by monkey prefrontal neurons, Cerebral Cortex Communications, 2022, 3, 1-17, reviewed BibTeX
  56. 56. *Tomioka, M., Jang, M.S., and Iino, Y., DAF-2c signaling promotes taste avoidance after starvation in Caenorhabditis elegans by controlling distinct phospholipase C isozymes, Commun Biol, 2022, 5, 1, 30, reviewed BibTeX
  57. 57. *Mansouri FA, Buckley MJ, Tanaka K, The neural substrate and underlying mechanisms of executive control fluctuations in primates, Progress in Neurobiology, 2022, 209, 102216, reviewed BibTeX
  58. 58. Ide, S., Kunitomo, H., Iino, Y., and Ikeda, K., Caenorhabditis Elegans Exhibits Morphine Addiction-like Behavior via the Opioid-like Receptor NPR-17, Front Pharmacol, 2021, 12, 802701, reviewed BibTeX
  59. 59. *Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, *Hashimoto R, Trends in big data analyses by multicenter collaborative translational research in psychiatry., Psychiatry and Clinical Neurosciences, 2022, 76, 1, 1-14, reviewed BibTeX
  60. 60. Takeshi D. Itoh, Takatomi Kubo, Kazushi Ikeda, Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localities, Neural Networks, 2022, 145, 356-373, reviewed BibTeX
  61. 61. *Shingo Shimoda, Lorenzo Jamone, Dimitri Ognibene, Takayuki Nagai, Alessandra Sciutti, Alvaro Costa-Garcia, Yohei Oseki, Tadahiro Taniguchi, What is the role of the next generation of cognitive robotics?, Advanced Robotics, 2022, 36, 3-16, reviewed BibTeX
ARCHIVE
ページトップへ