プログラム

• 講演者の許可を得た講演動画、Discussion Sessionの動画は、Vimeo.からご視聴頂けます。
• シンポジウムにご参加頂いた皆様は、AIBS Symposium Slack workspaceで引き続き全講演の動画のご視聴と質問やコメントの投稿が可能です。
• ポスター発表、レセプション、懇親会、round-tableは、キャンセルいたしました。 ポスターアブストラクト、ポスター、動画は こちらからご覧いただけます。

 

2020年10月10日(土) (JST 日本標準時 UTC+0900)

18:00
Playback of Keynote lecture and Session 1 talks
22:00
Get connected
22:15
Greeting:
Kenji Doya (Okinawa Institute of Science and Technology)
22:30
Discussion on the Keynote lecture:
Josh Tenenbaum (Massachusetts Institute of Technology)
“Building Machines That See, Think and Learn Like People”
23:00
Discussion on Session 1 talks: Deep Learning and Reinforcement Learning
Chair: Jun Morimoto (ATR Brain Information Communication Research Laboratory Group)
Discussant: Shun-ichi Amari (RIKEN Center for Brain Science)
Yann LeCun (Facebook AI Research & New York University)
“Self-Supervised Learning”
Yutaka Matsuo (The University of Tokyo)
“World Model for Perception, Control and Language”
Doina Precup (McGill University)
“Fast Reinforcement Learning with Generalized Policy Updates”
David Silver (DeepMind)
“Deep Reinforcement Learning from AlphaGo to AlphaStar”
Masashi Sugiyama (RIKEN Center for Advanced Intelligence Project / The University of Tokyo International Research Center for Neurointelligence)
“Recent Advances in Robust Machine Learning”

2020年10月11日(日) (JST 日本標準時 UTC+0900)

15:30
Playback of Session 2 & 3 talks
22:00
Discussion on Session 2 talks: World Model Learning and Inference
Chair: Hiroaki Gomi (NTT Communication Science Laboratories)
Discussant: Mitsuo Kawato (ATR)
Ila Fiete (Massachusetts Institute of Technology)
“Mixed Modular Codes and Remapping for Highly Generalizable Learning and Inference”
Karl Friston (University College London)
“Active Inference and Artificial Curiosity”
Yukie Nagai (The University of Tokyo International Research Center for Neurointelligence)
“Cognitive Development Based on Predictive Coding”
Maneesh Sahani (Gatsby Computational Neuroscience Unit)
“How Do Neural Systems Learn to Infer?”
Tadahiro Taniguchi (Ritsumeikan University)
“Symbol Emergence in Robotics: Pursuing Integrative Cognitive Architecture Using Probabilistic Generative Models for Real-world Language Acquisition”
23:00
Discussion on Session 3 talks: Metacognition and Metalearning
Chair: Masayuki Matsumoto (University of Tsukuba)
Discussant: Keiji Tanaka (RIKEN Center for Brain Science)
Matthew Botvinick (DeepMind)
“Object-oriented deep learning”
Ryota Kanai (ARAYA Inc.)
“Consciousness and Intelligence”
Angela Langdon (Princeton University)
“Model-based Reward Prediction: Algorithms for Learning to Represent a Task”
Hiroyuki Nakahara (RIKEN Center for Brain Science)
“Neural Computations for Making Decisions with Others’ Rewards and Decisions”
Xiao-Jing Wang (New York University)
“Learning to Learn and the Brain”

2020年10月12日(月) (JST 日本標準時 UTC+0900)

15:30
Playback of Session 4 & 5 talks
22:00
Discussion on Session 4 talks: AI for Neuroscience and Neuromorphic Technologies
Chair: Takatoshi Hikida (Osaka University)
Discussant: Kunihiko Fukushimas (FLSI)
James J. DiCarlo (Massachusetts Institute of Technology)
“Reverse Engineering Visual Intelligence”
Yukiyasu Kamitani (Kyoto University)
“Reconstructing Visual and Subjective Experience from the Brain”
Rosalyn Moran (King’s College London)
“The Free Energy Principle and Active Inference in Silico and in Vivo, Visual Sampling and ‘World Model’ Building”
Terrence Sejnowski (Salk Institute & Univesity of California San Diego)
“Artificial Intelligence Meets Human Intelligence”
Hidehiko Takahashi (Tokyo Medical and Dental University)
“Interface between AI and Psychiatry Research”
 23:00
Discussion on Session 5 talks: Social Impact and Neuro-AI Ethics
Chair: Masamichi Sakagami (Tamagawa University)
Anne Churchland (University of California, Los Angeles)
“Single-trial Neural Dynamics Are Dominated by Richly Varied Movements”
Kenji Doya (Okinawa Institute of Science and Technology)
“Toward the Society of AI Agents: What Should We Learn from the Brain and Human Society”
Arisa Ema (The University of Tokyo Institute for Future Initiatives)
“‘Interpretative Flexibility’ in AI and Neuroscience Research”
Hiroaki Kitano (Okinawa Institute of Science and Technology)
“Nobel Turing Challenge: A Grand Challenge on AI for Scientific Discovery”
Stuart Russell (University of California, Berkeley)
1.”Brains, Circuits, and Things”
2.”Human Compatible Artificial Intelligence”
ページトップへ