

Brain-like Unsupervised Feature Learning for Convolutional Neural Networks Takashi Shinozaki

CiNet, National Institute of Information and Communications Technology (NICT) Graduate School of Information Science and Technology, Osaka University

Summary

- Integrates competitive learning to CNNs
- -Unsupervised pre-training by competitive learning
- -Supervised fine-tuning by error based learning without BP signals
- Validate the method with MNIST, CIFAR-10 and ImageNet
- State-of-the-art performance as a biologically-motivated NN
- Could apply for various types of data
- -Video data, 1D-temporal sequence data, medical data, etc.

1. Introduction

3.2 Results

- Calculated by NVIDIA Tesla P100 with *Chainer v4* [Tokui+2012]
- -The code is available at https://github.com/t-shinozaki/convcp
- Validate the proposed method with three datasets
- MNIST dataset [LeCun 1998]
- -CIFAR-10 dataset [Krizhevsky+2009]
- ImageNet dataset [Russakovsky+2015]

• State-of-the-art performance as a biologically-motivated NN

Method	MNIST C	CIFAR-10	ImageNet Top-1 Top-5
Baseline [Bartunov+2018]	0.90	37.74	<u>63.93</u> 40.17
Ours	1.79	39.31	87.72 73.84
DTP, Parallel, LC [Bartunov+2018]	1.52	39.47	98.34 94.56
SDTP, Parallel, LC [Bartunov+2018]	1.98	46.63	99.28 97.15
FA, LC [Bartunov+2018]	1.85	<u>37.44</u>	93.08 82.54

1.1 Deep Neural Networks

- Key technologies of the recent revolutionary advance of AI
- Convolutional Neural Network (CNN) [LeCun+1989]
- Long Short Term Memory (LSTM) [Hochreiter & Schmidhuber 1997]
- Both of them use Back Propagation (BP) learning [Rumelhart+1986]
- Tremendously good for fine-tuning
- Extracts features for the discrimination \rightarrow Limits the generalization

1.2 Competitive Learning

- Traditional unsupervised learning method for NNs
- Used for a couple of classical neural networks
- Self Organizing Map (SOM) [Kohonen 1982]
- Neocognitron [Fukushima 1980]
- Extracts bases of input data like as ICA
- Good for pre-training, but not good for fine-tuning

Combine competitive learning with error based learning!!

2. Competitive Learning in Convolutional Layers

• Employ the simplest competitive learning

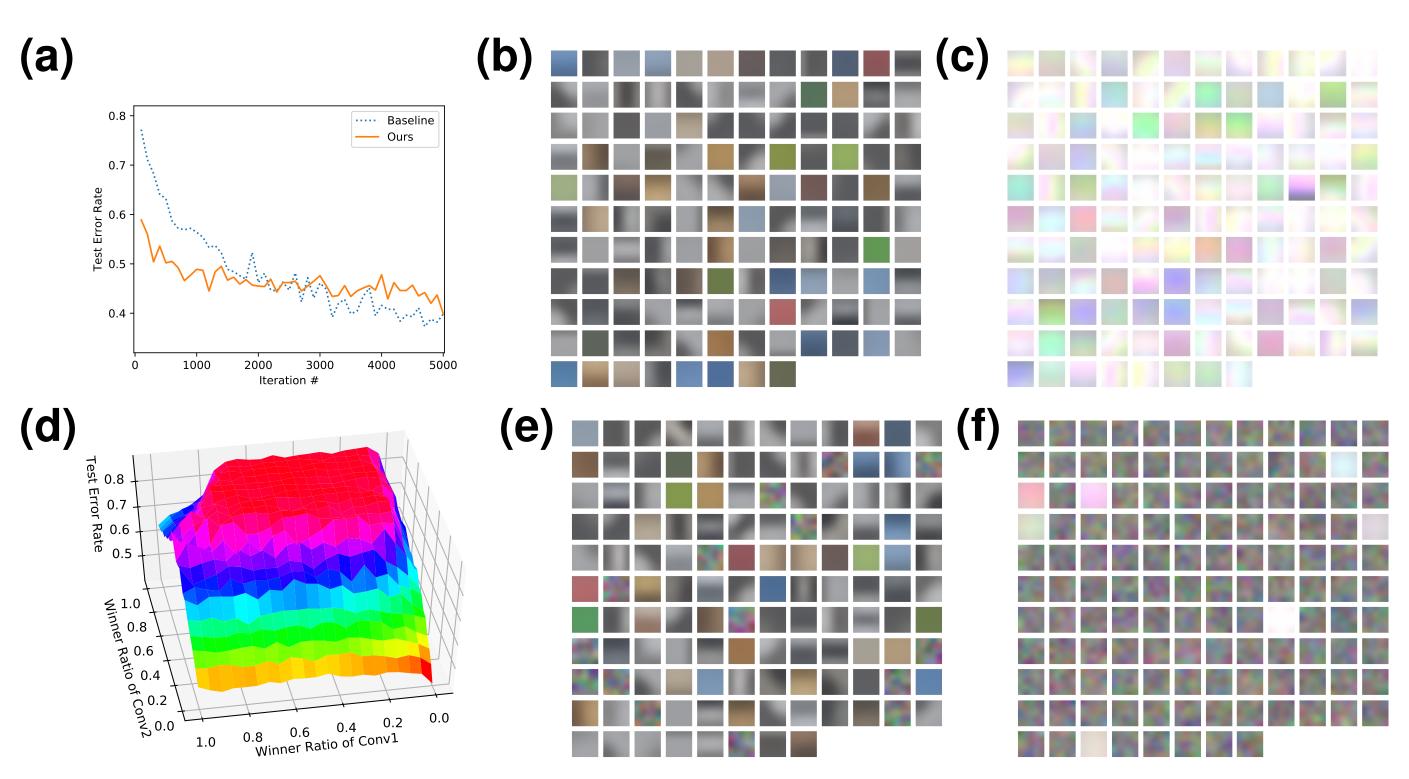
U U
Neocognitron [Fukushima 1980]

(1)

(2)

Table 1: Test errors of image discrimination tasks.

3.3 CIFAR-10



- Just use winner-takes-all (WTA) algorithm
- Do not use any spatial information over the filter space
- Basically behave alike conventional convolutional layers
- Weight gradient is calculated with the feedforward propagation

$$\Delta w_{l,i} = \begin{cases} \rho z_{l-1}, & \text{if } i = \operatorname{argmax}_k(u_{l,k} + b_k) \\ 0, & \text{otherwise,} \end{cases}$$

• u_l : output vector of *l*-th layer described as $u_l = W_l z_{l-1}$

- W_l : connection matrix, z_{l-1} : output vector of the previous layer
- ρ : learning coefficient of competitive learning, 0.01

$$b_i = C(1/N - p_i).$$

- *b_i*: conscience factor [Desieno 1988]
- Prevents for some filters to dominate over the layer
- -C: conscience coefficient, 5.0, N: the number of filters at the layer
- $-p_i$: the probability of winning for the *i*-th unit in the mini-batch
- Update weights with the gradient by conventional method: e.g. SGD, Adam
- The weight vector is normalized by L2-norm at every update
- WTA activation function
- ReLU must required well controlled threshold learned by BP

3. Experiments

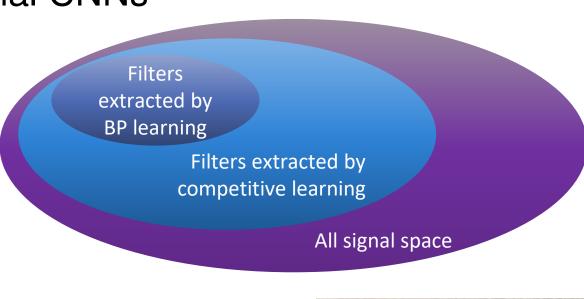
5x5 Conv

(a)

- (a) Transitions of test error rates during fine-tuning
 - The competitive learning accelerated the initial speed of fine-tuning
 - * Though the competitive layers do not perform BP learning at all
- (b,c) Obtained learning representations for conv1 & conv2
- Competitive learning robustly extracted bases of images
- -WTA activation function enables hierarchical competitive learning
- (d) Comparison over several winner ratios
- Winners Share All (WSA) activation function
 - * Only the upper units in the value order has output (controlled by winner ratio)
- -0.0 is the best, meaning WTA condition
- (e,f) Obtained learning representations without the conscience factor
- Stronger filters dominated and obstructed weaker filters
- Some filters couldn't get clear spatial patterns (especially in conv2)

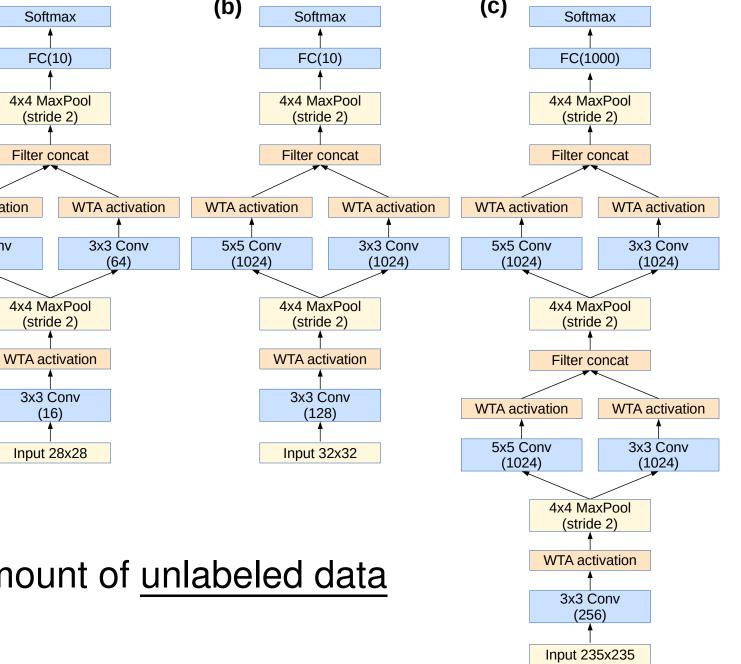
4. Discussion

- Integrates competitive learning into conventional CNNs
- Apply for unsupervised pre-training
- Powerful representation learning
- Acquires task-independent filters
- * Much more generalized filters
- Requires much more filters



3.1 Network Structure

- LeNet5 based networks
- Two or three *conv* layers
- * w/inception-like structure
- WTA activation function * Instead of ReLU
- Max-pooling
- One *fc* layer w/softmax
- Pre-training with competitive learning
- Unsupervised learning with a huge amount of unlabeled data
- Evaluation in fine-tuning by BP learning
- Supervised learning with labeled data
- Just for the last FC layer \rightarrow **No BP signal is required!!**



- * Most filters are **redundant** for a specific task * Maybe tolerance for adversarial attacks?
- Fundamentally, equivalent to BP learning $(\Delta w_{l,i} = \delta_{l,i} z_{l-1})$?
- Utilize a huge amount of unlabeled data

- * Application for many kind of time-series signals
- More effective when the number of filters was sufficiently large
- Enables seamless switching between unsupervised and supervised learning
- Applicable for semi-supervised learning?

• Future works

- Apply for Various types of data: Video data, 1D-temporal sequence data, etc.
- Utilize SOM like organization over the filter space
 - * The interpolation may enrich expressions of the filters
 - * Must require an explosive amount of memory and calculation power

• Pruning method for a specific task