
⚫ Background
Reinforcement Learning (RL) can be categorized into model-based methods that
exploit an (estimated) environmental model, and model-free methods that directly
learn a policy through the interaction with the environment. To improve learning
efficiency, we have proposed CRAIL (Uchibe, 2018), which dynamically selects a
learning module from multiple heterogeneous model-free RL modules according to
learning performance while multiple modules are trained simultaneously. However,
CRAIL does not consider model-based methods.

⚫ Entropy-regularized reinforcement learning
Each module has a policy and a state value function

Introduction

⚫ Model-free Cooperative Reinforcement And Imitation Learning (CRAIL)
[Uchibe, 2018]

Inverse RL using Density Ratio Estimation

⚫ Summary
We developed Model-based CRAIL, which integrates model-free and model-based RL modules
and selects one module according to the learning progress. Our method outperformed the
modules that were trained independently. We will consider the computing time in each step.
For example, a simple module can make a decision faster than a complicated module. It is often
appropriate in robot control.

⚫ Acknowledgments
This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Numbers JP19H05001.
This work was also supported by Innovative Science and Technology Initiative for Security Grant Number
JPJ004596, ATLA, Japan and JST-Mirai Program Grant Number JPMJMI18B8, Japan.

Experimental Results

Conclusion

⚫ References
1. Deisenroth, M., et al. (2015). Gaussian processes for data-efficient learning in robotics and control. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 408-423.
2. Haarnoja, T., et al. (2018). Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In Proc. of the 35th International Conference on Machine Learning, pp. 1861-1870.
3. Heess, N. et al. (2015). Learning continuous control policies by stochastic value gradients. In Advances in

Neural Information Processing Systems 28. 2015.
4. Uchibe, E. (2018). Cooperative and Competitive Reinforcement and Imitation Learning for a Mixture of

Heterogeneous Learning Modules. Frontiers in Neurorobotics.
5. Sutton, R.S. (1990). Integrated Architecture for Learning, Planning, and Reacting Based on Approximating

Dynamic Programming. In Proc. of the 7th International Conference on Machine Learning.

⚫ Training curves on
all the control tasks

Parallel deep reinforcement learning with
model-free and model-based methods

Eiji Uchibe. Dept. of Brain Robot Interface, Computational Neuroscience Labs., ATR International

⚫ Prepared Model-free RL modules

⚫ Contribution of this study
This study extends CRAIL to deal with model-based and model-free methods and
investigates whether dynamic switching between them contributes to the
improvement of learning efficiency. The proposed method was evaluated by
MuJoCo benchmark tasks. Experimental results show that a model-based method
with a simple model was selected at the early stage of learning, and a model-
based method with a complicated model was used at the later stage. Furthermore,
model-free methods were selected when the network did not have sufficient
capacity to represent the environmental dynamics.

⚫ Simulation: MuJoCo control tasks
Benchmark tasks provided by OpenAI. For comparison, each module is trained
independently

replay buffer

DPG SAC REINFORCE

mixed policy

experience

value and
policy

self
imitation

⚫ Prepared Model-based RL modules

Gaussian Process based SAC (GP-SAC)Soft Actor-Critic (SAC)

Replay buffer Replay buffer

• Learning from the replay buffer • Learning from the estimated model

action value 𝑄 𝑄

• Dynamics and reward are

estimated by Gaussian Process

• DYNA-style (Sutton, 1990)

• Uniform sampling from the replay

buffer

(Haarnoja et al., 2018)

Stochastic Value Gradient (SVG)
Probabilistic Inference for Learning

Control (PILCO)

Replay buffer

• Compute policy gradients analytically •NN model for computing two gradients

𝑑𝐽

𝑑𝜃

• Multiple importance sampling for

off-policy learning

• Expand the Bellman recursion for

1-step

• Multiple importance sampling for

off-policy learning

• Evaluate the long-term predictions

by cascading 1-step prediction

Replay buffer

𝑑𝑉

𝑑𝑥
,
𝑑𝑉

𝑑𝜃

(Deisenroth and Rasmussen, 2011;
Deisenroth et al., 2015)

(Heess et al., 2015)

• Multiple learning modules with

different algorithms and networks

– Mixed policy collect experiences

– All the modules share the experiences

– Trained with RL loss and self-imitation loss

• Mixing weights are determined by the

value function

• The appropriate module is selected

automatically

– Early stage: RBF x SAC

– Late stage: NN x DPG

• Each module has a policy and a state value function

– 𝜋𝑖 𝑢 𝑥 : prob. of the 𝑖-th module to select 𝑢 at 𝑥, and 𝑉𝑖(𝑥): expected value of returns at 𝑥

– 𝛾: discount factor，and 𝑟(𝑥, 𝑢): immediate reward

• Behavior policy is given by the weighted sum of policies

– 𝛼(𝑖 ∣ 𝑥): mixing weight is defined by

𝜋𝑏 𝑢 𝑥 = σ𝑖=1
𝑀 𝛼 𝑖 𝑥 𝜋𝑖 𝑢 𝑥

𝛼 𝑖 𝑥 ∝ exp 𝛽𝑉𝑖 𝑥

the agent tends to select the module that has a
large state value with high probability.

• The performance of MB-CRAIL increased

after about 5 × 104 steps

• PILCO learned faster, but its performance

saturated

• SAC learned more slowly but achieved

the best performance

• The model-based methods (PILCO and

SVG) have a large weight in the middle of

learning

• SAC is often selected at the end of

learning

⚫ Comparison of learning curves

