
⚫ Background
Reinforcement Learning (RL) can be categorized into model-based methods that 
exploit an (estimated) environmental model, and model-free methods that directly 
learn a policy through the interaction with the environment.  To improve learning 
efficiency, we have proposed CRAIL (Uchibe, 2018), which dynamically selects a 
learning module from multiple heterogeneous model-free RL modules according to 
learning performance while multiple modules are trained simultaneously. However, 
CRAIL does not consider model-based methods. 

⚫ Entropy-regularized reinforcement learning
Each module has a policy and a state value function

Introduction

⚫ Model-free Cooperative Reinforcement And Imitation Learning (CRAIL) 
[Uchibe, 2018]

Inverse RL using Density Ratio Estimation

⚫ Summary
We developed Model-based CRAIL, which integrates model-free and model-based RL modules 
and selects one module according to the learning progress. Our method outperformed the 
modules that were trained independently. We will consider the computing time in each step. 
For example, a simple module can make a decision faster than a complicated module. It is often 
appropriate in robot control. 
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⚫ Training curves on 
all the control tasks

Parallel deep reinforcement learning with 
model-free and model-based methods
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⚫ Prepared Model-free RL modules

⚫ Contribution of this study
This study extends CRAIL to deal with model-based and model-free methods and 
investigates whether dynamic switching between them contributes to the 
improvement of learning efficiency. The proposed method was evaluated by 
MuJoCo benchmark tasks. Experimental results show that a model-based method 
with a simple model was selected at the early stage of learning, and a model-
based method with a complicated model was used at the later stage. Furthermore, 
model-free methods were selected when the network did not have sufficient 
capacity to represent the environmental dynamics.

⚫ Simulation: MuJoCo control tasks
Benchmark tasks provided by OpenAI. For comparison, each module is trained 
independently
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⚫ Prepared Model-based RL modules
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• Learning from the replay buffer • Learning from the estimated model

action value 𝑄 𝑄

• Dynamics and reward are

estimated by Gaussian Process

• DYNA-style (Sutton, 1990)

• Uniform sampling from the replay 

buffer

(Haarnoja et al., 2018)

Stochastic Value Gradient (SVG)
Probabilistic Inference for Learning 

Control (PILCO)
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• Compute policy gradients analytically •NN model for computing two gradients
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• Multiple importance sampling for

off-policy learning

• Expand the Bellman recursion for

1-step

• Multiple importance sampling for

off-policy learning

• Evaluate the long-term predictions

by cascading 1-step prediction
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(Deisenroth and Rasmussen, 2011;
Deisenroth et al., 2015)

(Heess et al., 2015)

• Multiple learning modules with 

different algorithms and networks

– Mixed policy collect experiences

– All the modules share the experiences

– Trained with RL loss and self-imitation loss

• Mixing weights are determined by the 

value function

• The appropriate module is selected 

automatically

– Early stage: RBF x SAC

– Late stage: NN x DPG

• Each module has a policy and a state value function

– 𝜋𝑖 𝑢 𝑥 : prob. of the 𝑖-th module to select 𝑢 at 𝑥, and 𝑉𝑖(𝑥): expected value of returns at 𝑥

– 𝛾: discount factor，and 𝑟(𝑥, 𝑢): immediate reward

• Behavior policy is given by the weighted sum of policies

– 𝛼(𝑖 ∣ 𝑥): mixing weight is defined by

𝜋𝑏 𝑢 𝑥 = σ𝑖=1
𝑀 𝛼 𝑖 𝑥 𝜋𝑖 𝑢 𝑥

𝛼 𝑖 𝑥 ∝ exp 𝛽𝑉𝑖 𝑥

the agent tends to select the module that has a 
large state value with high probability. 

• The performance of MB-CRAIL increased 

after about 5 × 104 steps

• PILCO learned faster, but its performance 

saturated

• SAC learned more slowly but achieved 

the best performance

• The model-based methods (PILCO and 

SVG) have a large weight in the middle of 

learning

• SAC is often selected at the end of 

learning

⚫ Comparison of learning curves


