
Beneficial roles for chaotic 
variability in learning systems

Abstract. Neural responses are highly variable, even under identical task conditions. Significant efforts are being 
directed toward explaining how the brain copes with and may even leverage such variability to help learn the 
task and environment. Here we explore the issue in a recurrent neural network model that is trained to classify 
inputs. We find two potential beneficial roles for chaotic variability in these systems: (1) chaos can accelerate the 
flexible relearning of a task after it is modified; and (2) chaos can lift the network representation of data into a 
higher-dimensional space, which allows the network to classify inputs embedded in low-dimensional spaces.
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(RNN) influence the solutions learned by the network when trained to do a 
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We characterize these dynamics by how chaotic the trajectories are.
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Let’s choose a task to train the network on
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Effective dimensionality (ED) is 
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Both networks have perfect classification accuracy at the end of training. 
What happens if the task is changed in the middle of training?

If the labels are changed, 
this representation may be 
problematic due to tight 
overlap between points 
belonging to different 
classes



Switching task labels
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The more chaotic network is better at recovering after the label switch.
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At epoch 10, 50% of the labels are switched

Error regions are over 5 
network and task 
instantiations (see Methods)



Switching cluster locations
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• In this case, it is useful to expand dimensionality to help separate 
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• Chaotic dynamics is one mechanism for this expansion 
(Legenstein and Maass, Neural Networks (2007)).
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2-dimension inputs

• In this case, it is useful to expand dimensionality to help separate 
out the classes. 

• Chaotic dynamics is one mechanism for this expansion 
(Legenstein and Maass, Neural Networks (2007)). Chaotic divergence
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Conclusions
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• Chaotic dynamics can have utility in recurrent neural network models: 
• Leads to solutions that can more quickly adapt to changing data. 
• Expands dimensionality, which can help when classifying low-dimensional data. 

• This suggests beneficial attributes of the variability seen in biology, which may in 
part be generated by chaotic dynamics.



Methods
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• Chaos was modulated by increasing the variance of the connections between neurons at 
initialization:  where  and  is a matrix with standard 
normal entries. For the less chaotic network , and for the more chaotic network 

.

• Error regions on plots are found by fitting a gamma distribution to the data, and shading 

the region containing 75% probability mass of the distribution. For the accuracy plots 
this distribution was reflected around the y-axis and shifted by +1 (since accuracy is 
bounded above by 1), and for the dimensionality plots the distribution was shifted by +1 
(since the effective dimensionality is bounded from below by 1).

W = (1 − ϵ)I + (gϵ/ N)J ϵ = .01 J
g = 5

g = 250

̂ot = Rht + b′�

ht = tanh(Wht−1 + xt + b)

• Network equations

readout

recurrent unit activations


