O ST Cognitive Neurorobotics Research Unit
A HNORTAORAAT IV o |
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Motivation

How can agents achieve goals given only partial knowledge of the world? It is

generally assumed that agents can never have complete knowledge of their .
environment because the experience that can be gained in a finite amount of
time is limited. However, some agents such as humans are able to generalize ' @
from experience to form action plans that accomplish unfamiliar tasks.
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In our proposed model, generalization is achieved by learning probabilistic i |

patterns from well habituated sensory-motor trajectories. These prior oredict G? |
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distributions are stored in a low dimensional latent state space. Goal-directed ; f
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Prediction

planning is accomplished by inferring latent variables which maximizesthe
estimated lower bound, following the principle of Free Energy Minimization [1]. Initial condition Desired goal

Goal directed planning using PV-RNN
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e [ 3 1 state Method
t = t+1
1 E A7 error,, desiredu Our proposed model (GLean) uses the frameworks of predictive coding (PC) [2] and active
S - B s inference (AIF) [3], and leverages the PV-RNN architecture [4] to learn probabilistic patterns as a
Inference | = M prior distribution zP. For plan generation, given zP, a known initial condition and desired goal, we
use an estimate of the evidence based lower bound to infer a posterior distribution z4 that leads
state, | 3 | statey, to generation of a plausible action plan and sensory prediction.
Inferﬁ *g N CITOT desired,.,
[N In comparison, the forward model (FM) [5] is a conventional approach for sensory-motor systems
= proprioception,, and uses the current state and motor command to predict the next state and associated sensory
y motor,, .y . . . .
Inverse model |—» state. In theory it is possible to infer a sequence of optimal motor commands to reach a desired
PC + AIF goal state, however in practice it is impractical to learn such a combination with limited training.
Experl mental RESU ItS Accuracy at t=1 (start) and t=T (goal)
Our model (GLean) was evaluated with simulated robot tasks in Le(6, §) = Eg (s eyer) Por (¥1121)] + Egy (s1lep) [Poy (x7|21:7)]

probabilistic settings and demonstrated generalization with limited
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training data by setting an appropriate regularization coefficient. ( Kt [d¢(z1le1) lpe, (z1)] :Zz Kt [0 (ztler)pe (2|21 1)‘)

Complexity at t=1 _(start) and t=T (goal)

GLean also outperformed both a conventional forward model (FM), Estimated lower bound
and a model with stochasticity only in the initial state (SI) [6] in goal-
directed planning, due to the learned prior directing the search of Conclusion & Ongoing Work
motor plans within the range of habituated trajectories. This work demonstrates our approach to generating action
plans and sensory predictions for a robot to achieve untrained
Model  Success rate Avg. error at goal goals by generalizing from limited experience.
GLean 86.0% 1.52+0.07cm
Stochastic initial state (SI) 68.0% 2.02cm=0.14cm We are currently working on real time planning using physical
Forward model (FM) 0.0% - robot hardware, with the robot able to dynamically alter its

. lan in response to changes in its environment.
Success rate and error for GLean and two alternative methods P P 5
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Sensory state predictions (solid) compared to ground truth (dotted)

Simulated robot arm grasping a block and moving it to the goal
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