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Comparison between Shannon Entropy and Transfer Entropy
• Using artificial two-dimensional data

• Using agent-based modeling of two agents in interactive scenario
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• In this work we compare Shannon entropy (SE) and transfer entropy (TE)
in terms of:
• their general characteristics derived from applying these measures to
various cases of simulated artificial data

• their downstream effects on behavior when artificial agents are
evolved to maximize neural complexity indexed by these two
measures

• The entropic brain hypothesis (Carhart-Harris et al., 2014) proposes that
entropy can be viewed as an index of the state of consciousness that
spans the spectrum of cognitive states between high entropy associated
with flexible cognition and low entropy correlated with inflexible cognition.
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• Simulated two-dimensional data

• Interactive agents based on Candadai et al. (2019) model
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1. On artificial data
• TEC and TED do not behave in completely parallel manner
• TEC is predictably higher for ordered compared to shuffled uniform data

while TED is surprisingly high for shuffled uniform data
• for data in which one time series is random while the other highly

correlated, TEC is more sensitive to higher correlation than TED
• dependencies in oscillatory data are characterized as entropic by SE
• SE is maximized for random data, especially when drawn from a uniform

distribution
• SE is not sensitive to the order of data points

2. On data produced by agent-based modeling
• TEC leads to oscillatory behavior in neural activity. However, its range is
extremely restricted and does not translate into behavioral complexity. This
in turn, does not allow the agents to engage in interesting interactive
patterns which could lead to their reciprocal coupling and increase their
neural complexity (see Candadai et al., 2019).

• TED produces neural and behavioral complexity, which seems even higher
than that produced by maximizing SE. Whether this can lead to overall
more adaptive behaviors needs to be further investigated.

100 samples of artificial 2D data of size N=2000 were generated for each of
the following cases:
• uncorrelated random arrays from normal and uniform distributions
• constant arrays of a single value ([1.0, 1.0,…], [1.0, 1.0, …])
• correlated arrays of constant values ([1.0, 1.0,…], [2.0, 2.0, …])
• uniform filling of all 100x100 bins (here N=10,000), in regular and
random order

• 1 random array and 2nd array correlated with the 1st at various levels of
delayed correlation

• positions of a coupled spring mass system with various masses, spring
lengths and constants

• Pairs of embodied agents in a simulated 2-
dimensional environment. Each agent has
two acoustic sensors, one acoustic emitter
and two motors driving wheels.

• Neural architecture of an agent: Consisting
in 3 layers (sensor, neuron and actuator
layers) . The neuron layer has two neurons.

• Evolutionary algorithm: Optimization of the
parameters of the neural controllers to
maximize each agent’s neural entropy
(Shannon Entropy or TE).

• This raises the question of which entropy-based measure of neural
complexity is maximized at the most adaptive levels of consciousness in
the middle of the spectrum. While simple Shannon entropy seems like an
easy choice, it is likely to be maximal when the system’s behavior is close
to random. It has been argued that a more proper measure is one that
reflects a balance between integration and segregation of the system’s
components. This measure is often defined in terms of transfer entropy
(Mäki-Marttunen et al., 2013; Tononi, Sporns & Edelman, 1994).

Figure adapted from Carhart-Harris et al. (2014).

Binned discrete TE

Top row: plots of 2 agent movement trajectories. Bottom row: plots of the neural output of both agent’s 2 neurons
(top-most N1 of agent 1, then N2 of agent 1, N1 of agent 2, N2 of agent 2).

Plots of mean entropy values for Shannon entropy (SE), transfer entropy obtained separately for original continuous
values using KSG estimator (TEC) and values discretized into 100 bins using discrete estimator (TED).


