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Summary

 We present a novel whole brain analytics and simulation method.
« Deep-learning based causality analysis significantly outperforms

conventional analyfics methods such as Functional Connectivity,
multivariate Granger Causality, and Transfter Entropy in the large node
case.

Absiract

To elucidate brain function and pursue pathological studies, the
development of in silico simulation offers a number of opportunities to study
the properties of the brain in a non-invasive manner. In this study, we use a
data driven method to analyze the causal relationship between non-linear
Input and output, and we evaluate its performance over a number of
aspects. Our model comprises a fully connected network where each node
IS a deep neural network. The weights within and between nodes can be
trained on mult-modal data, such as fMRI BOLD, calcium imaging, etc., and
our model can be easily expanded to large-scale simulation.

Methods
Deep-Learning based Causal Model (DLCM)
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Figure 1. Definition of Deep-Learning based Causal Model

(A) Whole brain node status network and stimulus coming from outside brain (mainly
sensory input) (B) Showing signaling framework of one node status. A Deep Neurdl
Network (DNN) node receives the signal state of other brain nodes and exogenous signals
(outside brain stimulus). DNN unit calculates one output signal, in this case the next fime
step of the signal state of a node. A DNN unit is trained by teacher signals and the input of
other node states and exogenous signals. (C) The mathematical expression of Deep-
Learning based Causal Model.

DLCM Granger Causality (DLCM-GC)

Granger Causality (GC)[1] is a well established analytics method for time
series and multivariate GC (mvGC)[2] is applied for analyzing fMRI BOLD
signals. It $(t) is the node vector (5;(t),:-,S,,(t)) and each node §; has time
series of {S;(1),--+,S;(L)}. S;(¢t) is expressed by time lag p, the coefficient vector
A;, and a residual g; (t):

S5i(t) = Zp: Ay SE—k)" + & (t) (1)
If node | relation is removed fr?)m node |,

5P =) ALY SN -0+ (2)
the mvGC of S;,; is expressed bky= 1

SiLi = log (var(eg_j))/var(ei)) (3)

where g; and e( D are time series of residuals, var() denotes the statistical

variance. For vaC the coefficients and residuals are calculated by linear
regression. Recently, Neural Network based Granger Causality is studied in
several literatures, such as NN-GC [3], RNN-GC [4], ES-GC [5] and DNN-GC
[6]. DLCM can also calculate this type of Granger Causality. We simply use
Err; =S; — Teach; of single node | as residuals & and removing signal from

node j, Err( D = ¢ — Teach; as residuals £, Then, DLCM-GC is defined
Si; = log (var(Errg_j))/var(Erri)) (4)

Importantly, removing the signal from another node can be though of as
lesion simulation. One brain region is virfually impaired and expressed as
Granger Causality. Therefore, DLCM can also work as a lesion model [/].

Results
DLCM is trained by fuIIy random signals

YRV , I T o nt ' ' ( :
n P A M I ,!", Mt A ﬁ,l | r
A O Bb / ' ‘ L‘U "/‘ a ”M |I i III‘ I’\ I ' o _.-"‘\‘ k"l ".r'\Jql""’-, /\ "\'I ‘I'I INJ\.‘"I II:"\I"\I{I ‘IHII\I"\"I IJ\,\"I "V\,lllb\.‘l\ﬂ" \"/I'n"ll -‘\-‘"' ¥ I'.'I\_ 600
0| AL ﬂ/\_fh\, fv-/ w\/x/\rf‘\'\ ] ol v : / ! H |
O O T T T T e M e R B R m ) —=-30 —<60
A o m A N o M N 70 =120
asH! ‘II M \ | VAN A "‘\ AW N { .'\-‘ 1 |"'I 1Y N asH! ‘II ||‘ \'\A. / i { \/ \‘\;' | e "’\.' Va ,."\“ [ ,'\ PR AT
III |ﬁl ‘I_.\."-.,-' gy TRAVARY ! ||."' N W I|,. Il ", 'uf"l.' \J Il." ! IlI | I.«."J\'-,"J RNA \/ \r’li v Il-'ll\"’l Wl \ I'u I"I‘I'II 'II.'I ! 500 - ] 50 ] 80
O O LS PUA AL S e b op v Vel
mmmmmmmmmmmmmmmmmmmmmmmm
i -"', i I‘II A " | I "\ I| ‘l‘ I’\I \III :'. A I ",I I\ .-'F'| ' i| A ' 1 a / il f'l .'r I‘.I
® 'Ilvll v II""\ \ |" Ib\‘u'll" "I\‘";ll'y'lr‘l\‘l | U I‘l,ll "l."l\""l ‘|| / III )N W I‘L-"I \ |I‘ ' M\ 4 o _lll'll v \\/’\\'\ )\' v \ '\/ \(\ \‘\ | ll)\’ f MV
LESPVY SN A UL LIPS VAN of! 73400 |
O O a wo X 3 4 50 &0 T B W 100 [1] \IU 2‘0 WWWWWWW 100 8
I I i H I A ’ I ‘ I I I I I I I li \H I "\1 " I '\,?| ‘ .m‘ .'\l I I I |\I "\ I N I A | &
a sk | - .-'\"III Al AMEANTY A MY AT LA INAN ,\_
F " d o W\ /\/A\ "1‘ '\)fVVA MM\/\I M Mﬁ 00 AV, Ill |'\ | lfllg-'l I‘|,'I \ [ AN '.'—1" /u y \ll" ‘,-" le' GE)
ully ranaom = @ ——— s e T e R R = 300 r
—-—
° 1 T T I|I ."'. T T 4 LAV T T 1 . T Illw /‘-\ T T /1 T T ; T 7
Independent signals s\ AW, AW S AP VAT v it O
oiﬁw J\;L’\/\,{‘WW'\W\/‘TA/\AV '.WV Wi«/\/\/\ﬁ' 07\: LA VANNAGY uv oty (A J =
Trqining Conditions o 0 ®  ® % ® % n®  ® % o o 0 ®  ® % ® % n®  ® % o O 200 |
N I IM I -'FI .tl ‘:-‘ I I -'f"\ 4‘ ! I i I f |‘\I‘ | I |'n' f I' (WA I IMI I ’l /I ﬂ \ I il 4‘ Il I \ I f \ | I .'ﬂl I' F |:
N Ode N um ber . 8 as ?. III-"\‘-., \ |I .""U." ||I;:. |II ‘-.‘_ ‘-'.'.I'I\'.';': l;ll|l‘f||| | IIIk ;'M \.I‘I ,-'. .I'I III.‘.IrﬁI|III '\,\‘\ ,-n'-\'l“'.l.-‘l'\ ;. |‘|l, |I .'”'.Iu“llv'; {l s _Ill II-"\-U" v/ |I -'I'u'l III lll .,f\"\{ﬁl',flf »",J'u '\’A/\ b".\:f\/.'xavl\r\;w\; IVIIVIIHAI\'
EXOg enous In pUT :0 0 :JLA’;«J—”;'— ~.sl—-r.'&q_~‘,'—“-~)\.-"l-\,ﬁ,§:fla"m,l\,\ e L*:V~J\_ N . | Ir VAT | / /]
. a w0 3% 40 50 & WM s 0% wa 0 W A 3 40 50 & T B0 8 00
SIgﬂCﬂ Leng’rh +100 m il wa A AW \ Ao bk TV T an A n/WHA T L 100 | W
a5 \\I h Iu" J V |,'I Uy / l- .'.'II.‘A'\'I ||-'I 4 ". -'| v "n"‘u N I| Il-" II"I i || ' 'll‘" o5y \,\./ \. / \4 N \.\.fl || ,'\" 'ml;, \‘\/ V 3 '\ |
: . 0 WV ob 0 e v e .__._H__H——I—I—-H_H
Hidden1 Neurons : 32 Y Vs 0 A LR ML LA L
i : I | ' i ' ' ‘- 1 |:\ ' .'l\ \‘-.I I‘x A fl ||| f 1 ' ' ' A ' T T L R Y o W N [ N R N N S I R S S
Hidden2 Neurons : 22 I A L i A AT n ] Ao ATV AT T 0
T IV W WY VWY V VY WYYV YV 200 400 600 800 1000 1200

0 e | AN o U
Training Epoch : 1000 I Signal Length

DOQ

O S, (t)= Se(t — 1)
S4(8)= Se(t 1)

@

O E -

Figure 2. Training result of fully random (uniform distribution) signals

(A) Node network image and training conditions. (B) Left shows before training signals of 8
nodes (Red: teaching signal, Blue: DLCM output). Right shows after training signals. Left
Mean Absolute Error (MAE) is 0.456. Right MAE is 0.018. DLCM was successfully trained. (C)
Training time result of signal length and node count. (D) Node network image for
evaluating Functional Connectivity (FC), mvGC and DLCM-GC. Node 6 signal is copied to
node 2 and 4 at next time step. (E) FC result of D. Color range is [-1, 1]. (F) mvGC result of
D. Colorrange is [-5a, 50]. (G) DLCM-GC result of D. Color range is [-5a, 5a].

DLCM-GC can detect network connections from DCM
simulated BOLD signals as well as mvGC, eic.

D Kruskal-Wallis ANOVA: P = 7.0e-06
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Figure 3. Evaluation result of 7 algorithms to detect ground fruth connections

(A) Node network image pat/ - all nodes were connected and some nodes had strong
connections. (B) Adjacency matrix A of network in A, used by Spectral DCM (spcDCM) [8].
This provides a ground truth connectivity for the DCM and 8 node signals were generated
together with 8 exogenous signals. (C) ROC curve of detecting ground fruth matrix, (strong
connection:|a;; [>0.2). Seven algorithms were compared: FC, spcDCM, mvGC, RNN-GC,
DLCM-GC, LINUE-TE (Transfer Entropy) and NNNUE-TE. (D) AUC of C, Steel test: * P<0.05. (E)
Node network image of patl0. (F) Adjacency matrix A of network in E. (G) ROC curve of
detecting ground ftruth in F. (H) AUC of G. (l) Network density (sparse pattern) vs. AUC
result. (J) Network density (fully connected) vs. AUC result. (K) Computation time resulfs.
spcDCM was calculated by DCM12 on MATLAB 2019b. LINUE-TE and NNNUE-TE were
calculated by MUTE [?] on MATLAB. RNN-GC was calculated using Python 3.6. Machine
spec was OS: Windows 10 Pro; CPU: AMD Ryzen Threadripper 3970X 32-Core Processor
3.70GHz, Mem:128GB. Tested node counts were 8, 12 and 16 and number of trials were
spcDCM N=20,10,4 (due to large computation time) and all others N=20,10,10.

DLCM-GC significantly outperforms mvGC and LINUE-
TE in large node case

0 . Kruskal-Wallis ANOVA: P = 2.05e-06
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Figure 4. Evaluation result of 5 algorithms to detect original connections.

(A) Ground fruth connectome matrix C (pat12(32)) for generating node signals calculated
by the reduced wong-wang model [10] from The Virtual Brain software [11]. Matrices were
generated from Allen's mouse connectome matrix [12][13]. Node numbers were
16,32,48,64,80,98 and all network densities ([c;; [>1) were 0.15. (B) ROC curve of detecting

ground truth matrix C. 5 algorithms, FC, mvGC, pwGC, DLCM-GC, LINUE-TE were
compared. (C) AUC of B, Steel test: * P<0.05. (D) Ground truth connectome matrix D
(pat16(98)) (E) ROC curve of detecting ground truth matrix D. (F) AUC of E. (G) AUC results

for different node numbers.
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