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Investigating a Data-Driven Deep-Learning Approach 

to Simulate Whole Brain Dynamics
Takuto Okuno1, Alexander Woodward1

1 Connectome Analysis Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Summary

To elucidate brain function and pursue pathological studies, the

development of in silico simulation offers a number of opportunities to study

the properties of the brain in a non-invasive manner. In this study, we use a

data driven method to analyze the causal relationship between non-linear

input and output, and we evaluate its performance over a number of

aspects. Our model comprises a fully connected network where each node

is a deep neural network. The weights within and between nodes can be

trained on multi-modal data, such as fMRI BOLD, calcium imaging, etc., and

our model can be easily expanded to large-scale simulation.

Deep-Learning based Causal Model (DLCM)

(A) Whole brain node status network and stimulus coming from outside brain (mainly

sensory input) (B) Showing signaling framework of one node status. A Deep Neural

Network (DNN) node receives the signal state of other brain nodes and exogenous signals

(outside brain stimulus). DNN unit calculates one output signal, in this case the next time

step of the signal state of a node. A DNN unit is trained by teacher signals and the input of

other node states and exogenous signals. (C) The mathematical expression of Deep-

Learning based Causal Model.

Figure 1. Definition of Deep-Learning based Causal Model

Figure 3. Evaluation result of 7 algorithms to detect ground truth connections

Results

Figure 4. Evaluation result of 5 algorithms to detect original connections.

• We present a novel whole brain analytics and simulation method.

• Deep-learning based causality analysis significantly outperforms 

conventional analytics methods such as Functional Connectivity, 

multivariate Granger Causality, and Transfer Entropy in the large node 

case.
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Abstract

Methods

Granger Causality (GC)[1] is a well established analytics method for time

series and multivariate GC (mvGC)[2] is applied for analyzing fMRI BOLD

signals. If 𝑺 𝑡 is the node vector (𝑆1 𝑡 ,⋯ , 𝑆𝑛 𝑡 ) and each node 𝑺𝑖 has time

series of {𝑆𝑖 1 ,⋯ , 𝑆𝑖 𝐿 }. 𝑆𝑖 𝑡 is expressed by time lag 𝑝, the coefficient vector

𝑨𝑖𝑘 and a residual 𝜀𝑖 𝑡 :

𝑆𝑖 𝑡 = ෍

𝑘=1

𝑝

𝑨𝑖𝑘 𝑺 𝑡 − 𝑘 T + 𝜀𝑖 𝑡

If node j relation is removed from node i,

𝑆𝑖
(−𝑗)

𝑡 = ෍

𝑘=1

𝑝

𝑨𝑖𝑘
(−𝑗)

𝑺(−𝑗) 𝑡 − 𝑘 T + 𝜀𝑖
(−𝑗)

𝑡

the mvGC of 𝑆𝑗→𝑖 is expressed by

𝑆𝑗→𝑖 = log ൗ𝑣𝑎𝑟(𝜺𝑖
(−𝑗)

) 𝑣𝑎𝑟(𝜺𝑖)

where 𝜺𝑖 and 𝜺𝑖
(−𝑗)

are time series of residuals, 𝑣𝑎𝑟() denotes the statistical

variance. For mvGC the coefficients and residuals are calculated by linear

regression. Recently, Neural Network based Granger Causality is studied in

several literatures, such as NN-GC [3], RNN-GC [4], ES-GC [5] and DNN-GC

[6]. DLCM can also calculate this type of Granger Causality. We simply use

𝑬𝒓𝒓𝑖 = 𝑺𝑖 − 𝑻𝒆𝒂𝒄𝒉𝑖 of single node i as residuals 𝜺𝑖 and removing signal from

node j, 𝑬𝒓𝒓𝑖
(−𝑗)

= 𝑺𝑖
(−𝑗)

− 𝑻𝒆𝒂𝒄𝒉𝑖 as residuals 𝜺𝑖
(−𝑗)

. Then, DLCM-GC is defined

(1)

(2)

(3)

𝑆𝑗→𝑖 = log ൗ𝑣𝑎𝑟(𝑬𝒓𝒓𝑖
(−𝑗)

) 𝑣𝑎𝑟(𝑬𝒓𝒓𝑖) (4)

Importantly, removing the signal from another node can be though of as

lesion simulation. One brain region is virtually impaired and expressed as

Granger Causality. Therefore, DLCM can also work as a lesion model [7].

DLCM is trained by fully random signals
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(A) Node network image and training conditions. (B) Left shows before training signals of 8

nodes (Red: teaching signal, Blue: DLCM output). Right shows after training signals. Left

Mean Absolute Error (MAE) is 0.456. Right MAE is 0.018. DLCM was successfully trained. (C)

Training time result of signal length and node count. (D) Node network image for

evaluating Functional Connectivity (FC), mvGC and DLCM-GC. Node 6 signal is copied to

node 2 and 4 at next time step. (E) FC result of D. Color range is [-1, 1]. (F) mvGC result of

D. Color range is [-5𝜎, 5𝜎]. (G) DLCM-GC result of D. Color range is [-5𝜎, 5𝜎].

Figure 2. Training result of fully random (uniform distribution) signals
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(A) Node network image pat7 - all nodes were connected and some nodes had strong

connections. (B) Adjacency matrix A of network in A, used by Spectral DCM (spcDCM) [8].

This provides a ground truth connectivity for the DCM and 8 node signals were generated

together with 8 exogenous signals. (C) ROC curve of detecting ground truth matrix, (strong
connection:|𝑎𝑖𝑗 |>0.2). Seven algorithms were compared: FC, spcDCM, mvGC, RNN-GC,

DLCM-GC, LINUE-TE (Transfer Entropy) and NNNUE-TE. (D) AUC of C, Steel test: * P<0.05. (E)

Node network image of pat10. (F) Adjacency matrix A of network in E. (G) ROC curve of

detecting ground truth in F. (H) AUC of G. (I) Network density (sparse pattern) vs. AUC

result. (J) Network density (fully connected) vs. AUC result. (K) Computation time results.

spcDCM was calculated by DCM12 on MATLAB 2019b. LINUE-TE and NNNUE-TE were

calculated by MuTE [9] on MATLAB. RNN-GC was calculated using Python 3.6. Machine

spec was OS: Windows 10 Pro; CPU: AMD Ryzen Threadripper 3970X 32-Core Processor

3.70GHz, Mem:128GB. Tested node counts were 8, 12 and 16 and number of trials were

spcDCM N=20,10,4 (due to large computation time) and all others N=20,10,10.

DLCM-GC significantly outperforms mvGC and LINUE-

TE in large node case
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(A) Ground truth connectome matrix C (pat12(32)) for generating node signals calculated

by the reduced wong-wang model [10] from The Virtual Brain software [11]. Matrices were

generated from Allen's mouse connectome matrix [12][13]. Node numbers were
16,32,48,64,80,98 and all network densities (|𝑐𝑖𝑗 |>1) were 0.15. (B) ROC curve of detecting

ground truth matrix C. 5 algorithms, FC, mvGC, pwGC, DLCM-GC, LINUE-TE were

compared. (C) AUC of B, Steel test: * P<0.05. (D) Ground truth connectome matrix D

(pat16(98)) (E) ROC curve of detecting ground truth matrix D. (F) AUC of E. (G) AUC results

for different node numbers.
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