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What Is My Talk about?

Machine learning from big data is successful.

However, there are various applications where 
massive labeled data is not available.

 In this talk, I will introduce our recent advances 
in classification from weak supervision .
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1. Classification of classification
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4. UU classification
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Supervised Classification
Binary classification from labeled samples:

A large number of labeled samples yield 
better classification performance.
 Optimal convergence rate:
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Unsupervised Classification 5

Since collecting labeled samples is costly, 
let’s learn a classifier from unlabeled data.

This is equivalent to clustering.

To justify this, need the assumption that 
each cluster corresponds to each class.
 This is rarely satisfied in practice.



Semi-Supervised Classification

Use a large number of unlabeled samples and 
a small number of labeled samples:

Find a decision boundary along cluster 
structure induced by unlabeled samples.
 Not that different from unsupervised classification.
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Chapelle, Schölkopf & Zien (MIT Press 2006) and many
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Classification of Classification 7

Choose an appropriate formulation 
depending on the cost requirement.
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PU Classification: Setup 9

Given: Positive and unlabeled samples

Goal: Obtain a PN classifier

Class +1

Unlabeled (mixture of
class +1 and class -1)

Examples:

 Click vs. non-click

 Friend vs. non-friend



PU Classification
Classification risk:

Equivalent expression with PN data:

 : Class-prior probability
(assumed known; it can be accurately estimated)

Since no N data is available in PU setting, 
false positive rate cannot be estimated.
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False negative rate
(P is misclassified as N)

False positive rate
(N is misclassified as P)

du Plessis, Niu & Sugiyama (IEICE2014, MLj2017)



PU Classification

U is a mixture of P and N:

 N-risk can be estimated from PU data.

Equivalent expression of risk without N data:

 Unbiased estimation is possible only from P and U.
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loss function for P data

loss function for U data

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)



Implementation in MATLAB®

Essentially 1 line for linear least-squares!
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%Data generation
n=50; m=150; p=50;
x=randn(n+m,2);
x(1:n+p,1)=x(1:n+p,1)-5;
x(:,3)=1; u=x(n+1:end,:);
y=[ones(n+p,1); -ones(m-p,1)];
figure(1); z=[ones(n,1); zeros(m,1)]; 
plot(x(y==1&z==1,1),x(y==1&z==1,2),'bo');
plot(x(y==1&z==0,1),x(y==1&z==0,2),'ko');
plot(x(y==-1,1),x(y==-1,2),'kx');

% Computing the solution
t=(u'*u/n+0.1*eye(3))＼(2*p/m*mean(x(1:n,:))-mean(u))';
plot([-10 10],-(t(3)+[-10 10]*t(1))/t(2),'k-');

P

U

Ordinary LS PU-LS



PU for Deep Networks
Population false negative rate is non-negative:

However, its PU empirical
approximation can be
negative (in particular,
for flexible deep nets).

We impose it to be
non-negative through
back-prop training:
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Kiryo, Niu, du Plessis & Sugiyama (arXiv2017)

Plain PU test

PN test
Non-negative PU test

Plain PU train

PN train

Non-negative PU
train



PU Classification: Summary 14

Just separating P and U is biased.

Use composite loss
for P data.

 If                            ,
same loss for P and U data.
 Optimal convergence rate achieved.

 If                  ,
objective is convex.

For deep nets, roundup the
empirical false negative rate.

Squared

Margin

Double
hingeLogistic

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015)
Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016) 

Kiryo, Niu, du Plessis & Sugiyama (ArXiv2017)
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Semi-Supervised
(PNU=PU+PN) Classification
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PU data is enough for optimal learning. 

Convex combination of PU & PN is still optimal!

 Precisely, we switch PU+PN and NU+PN.

Sakai, du Plessis, Niu & Sugiyama (arXiv2016)

Class +1

Unlabeled

Class -1



PU+PN Classification

We use unlabeled data for loss evaluation,
not for regularization (as manifold smoothing).
 Label information is extracted from unlabeled data!

Generalization error bound:

 Unlabeled data helps without cluster assumptions!
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: # of positive,
negative and unlabeled samples

: Empirical version of              



Numerical Results
Misclassification error rate: [average (std)]

PU+PN works the best!
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(Gradvalet & Bengio,
NIPS2004)

(Belkin et al.,
JMLR2006)

EntRegPU+PN

(Niu et al., 
ICML2013)

(Li et al., 
JMLR2013)

5% t-test
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UU Classification: Setup

Given: Two sets of unlabeled data

Assumption: Only class-priors are different

Goal: Learn a classifier for equal test class-prior
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Optimal Classifier

Sign of the difference of class-posteriors:

Under equal test class-prior                            ,

Sign of     is unknown, but just knowing

allows optimal classification!
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du Plessis, Niu & Sugiyama (TAAI2013)

Decision boundary



Estimation Method 1

Difference of kernel density estimators:
 Estimate                 from                         

separately.

 Simple but systematic under-estimation of
.
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Anderson, Hall & Titterington (J. Multivariate Analysis 1994)



Estimation Method 2

Direct density-difference estimation:
 Directly fit a model to

without explicitly estimating                 .

 Linear least-squares yields an analytic solution:

 convergence under proper setting.
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Kim & Scott (IEEE-TPAMI2010)
Sugiyama, Suzuki, Kanamori,

du Plessis, Liu & Takeuchi
(NIPS2012, NeCo2013)



Least-Squares Density Difference
(LSDD): MATLAB® Implementation
Essentially only 1 line!
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% Data generation 

n=400; x=randn(1,n/2); y=randn(1,n/2)+1; z=[x y];

a=repmat(z.^2,n,1); b=a+a'-2*z'*z; G=sqrt(pi)*exp(-b/4);

h=mean(exp(-b(:,1:n/2)/2),2)-mean(exp(-b(:,n/2+1:n)/2),2);

% Computing the solution

t=(G+0.1*eye(n))＼h;

plot(z,G*t,'*'); 



Estimation Method 3
Direct sign density-difference (DSDD) 

estimation:
 is the solution of

 Empirical version:

Since it is non-convex, we use the convex-concave 
procedure (CCCP) to obtain a local solution.

 convergence under proper setting.

26

This corresponds to maximizing 
Fenchel dual lower-bound of L1-distance:

Keziou (2003)

du Plessis, Niu & Sugiyama (TAAI2013)



Numerical Results
Misclassification error rate: [average (std)]

UU classification with direct estimation of
(sign of) density difference works well !
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k-means

UU classification Clustering Spectral
Ng et al.

(NIPS2001)

Infomax
Sugiyama et al.

(ICML2011)



UU Classification: Summary

Given two sets of unlabeled data with 
different class-priors, estimate the sign of 
difference of class-posteriors:

Same convergence rate as fully supervised 
case can be achieved!
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du Plessis, Niu & Sugiyama (TAAI2013)
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Classification with high accuracy and 
low labeling cost is practically important!
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RIKEN Center for AIP
RIKEN founded Center for Advanced 

Intelligence Project (AIP) in 2016.

Our missions:
1. Development of  next-generation AI technology 

(understand deep learning, go beyond deep learning)

2. Acceleration of scientific research (iPS cells, 
manufacturing, materials…)

3. Contribution to solving socially critical problems 
(healthcare for super-aged society, disaster 
resilience, infrastructure management…)

4. Study of ethical, legal and social issues of AI.

5. Human resource development (academia & industry).
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Organization of AIP Center 31

Various application domains
(companies, universities, research institutes, etc.)

Goal-Oriented Technology Research Group:
Abstract complex real-world problems into solvable forms

(22 PIs, 30 researchers, 21 students)

Generic Technology Research Group:
Develop fundamental theory and algorithms

for abstracted problems
(18 PIs, 41 researchers, 30 students)

Artificial Intelligence in Society Research Group:
Analyze the influence of AI spreading in society

(8 PIs, 10 researchers)

180
research

staffs
+
17

secre-
taries
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Our Office in the Heart of Tokyo!
Directly connected to Tokyo

Metro Nihonbashi Station.

6-min walk from Tokyo Station.

Open discussion space

Entrance15th floor
of this bldg.

Visit us!


