Gatsby-Kakenhi Joint Workshop on AI and Neuroscience, London May 11-12, 2017

Classification from Weak Supervision

Masashi Sugiyama

Director, RIKEN Center for Advanced Intelligence Project (AIP) Professor, The University of Tokyo

What Is My Talk about?

2

Machine learning from big data is successful.

- However, there are various applications where massive labeled data is not available.
- In this talk, I will introduce our recent advances in classification from weak supervision.

Organization

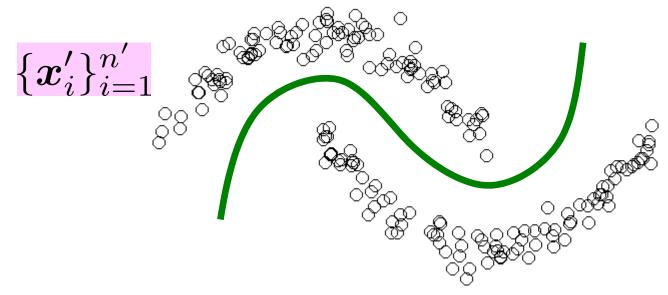
- 1. Classification of classification
- 2. PU classification
- 3. PNU (=PU+PN) classification
- 4. UU classification

4 **Supervised Classification** Binary classification from labeled samples: $\{(x_i, y_i)\}_{i=1}^n$ $x \in \mathbb{R}^d$ $y \in \{+1, -1\}$ Class +1 \mathbf{O} **Decision boundary**

- A large number of labeled samples yield better classification performance.
 - Optimal convergence rate: $O(n^{-1/2})$

Unsupervised Classification ⁵

Since collecting labeled samples is costly, let's learn a classifier from unlabeled data.

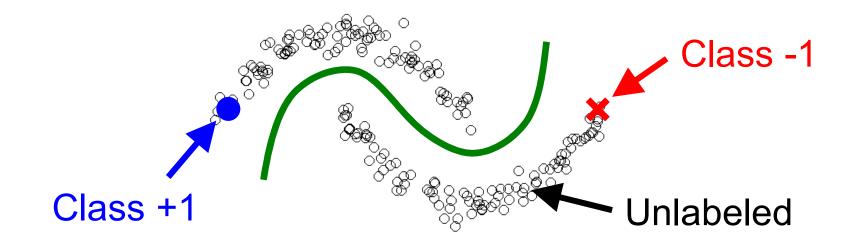


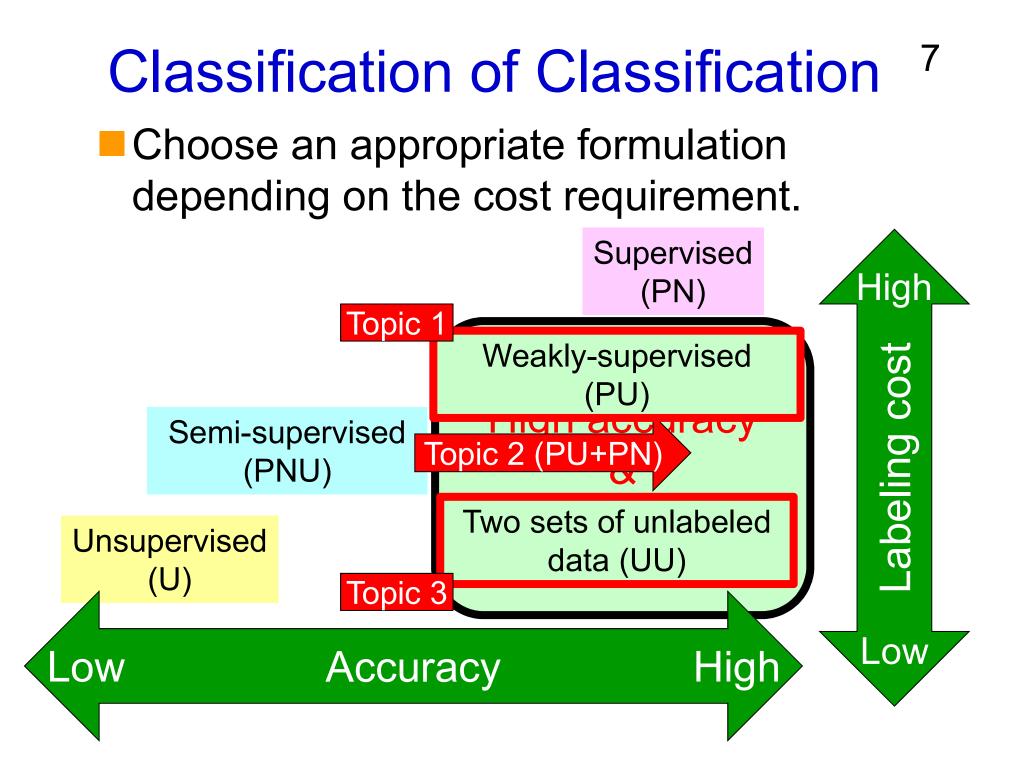
- This is equivalent to clustering.
- To justify this, need the assumption that each cluster corresponds to each class.
 - This is rarely satisfied in practice.

Semi-Supervised Classification ⁶

Chapelle, Schölkopf & Zien (MIT Press 2006) and many

- Use a large number of unlabeled samples and a small number of labeled samples:
- Find a decision boundary along cluster structure induced by unlabeled samples.
 - Not that different from unsupervised classification.





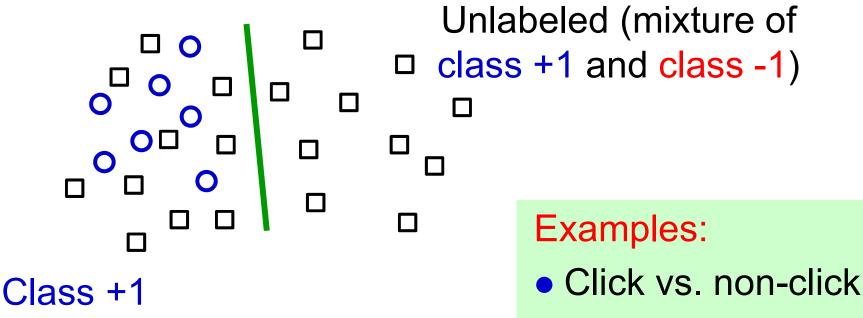
- 1. Classification of classification
- 2. PU classification
- 3. PNU (=PU+PN) classification
- 4. UU classification

PU Classification: Setup

Given: Positive and unlabeled samples

$$\{(\boldsymbol{x}_i, y_i = +1)\}_{i=1}^n \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x}|y = +1) \\ \{\boldsymbol{x}'_i\}_{i=1}^{n'} \overset{\text{i.i.d.}}{\sim} p(\boldsymbol{x})$$

Goal: Obtain a PN classifier



Friend vs. non-friend

PU Classification

- **Classification risk:** $R(f) = \int \ell(yf(x))p(x,y)dx$
- Equivalent expression with PN data:

$$R(f) = \pi \int \ell(f(\boldsymbol{x})) p(\boldsymbol{x}|\boldsymbol{y} = +1) d\boldsymbol{x}$$
 False negative rate
(P is misclassified as N)

$$+(1-\pi)\int \ell\Big(-f(\boldsymbol{x})\Big)p(\boldsymbol{x}|\boldsymbol{y}=-1)\mathrm{d}\boldsymbol{x}$$
 False positive rate
(N is misclassified as P)

- π = p(y = +1): Class-prior probability
 (assumed known; it can be accurately estimated)
 du Plessis, Niu & Sugiyama (IEICE2014, MLj2017)
- Since no N data is available in PU setting, false positive rate cannot be estimated.

PU Classification¹¹

du Plessis, Niu & Sugiyama (NIPS2014, ICML2015) Niu, du Plessis, Sakai, Ma & Sugiyama (NIPS2016)

$$R(f) = \pi \int \ell(f(\boldsymbol{x})) p(\boldsymbol{x}|y=+1) d\boldsymbol{x} + (1-\pi) \int \ell(-f(\boldsymbol{x})) p(\boldsymbol{x}|y=-1) d\boldsymbol{x}$$

U is a mixture of P and N:

 $p(x) = \pi p(x|y = +1) + (1 - \pi)p(x|y = -1)$

N-risk can be estimated from PU data.

Equivalent expression of risk without N data:

 $R(f) = \pi \int \tilde{\ell}(f(\boldsymbol{x})) p(\boldsymbol{x}|\boldsymbol{y} = +1) d\boldsymbol{x} \quad \begin{array}{l} \text{loss function for P data} \\ \tilde{\ell}(m) = \ell(m) - \ell(-m) \end{array}$ $+ \int \ell(-f(\boldsymbol{x})) p(\boldsymbol{x}) d\boldsymbol{x} \quad \begin{array}{l} \text{loss function for U data} \end{array}$

Unbiased estimation is possible only from P and U.

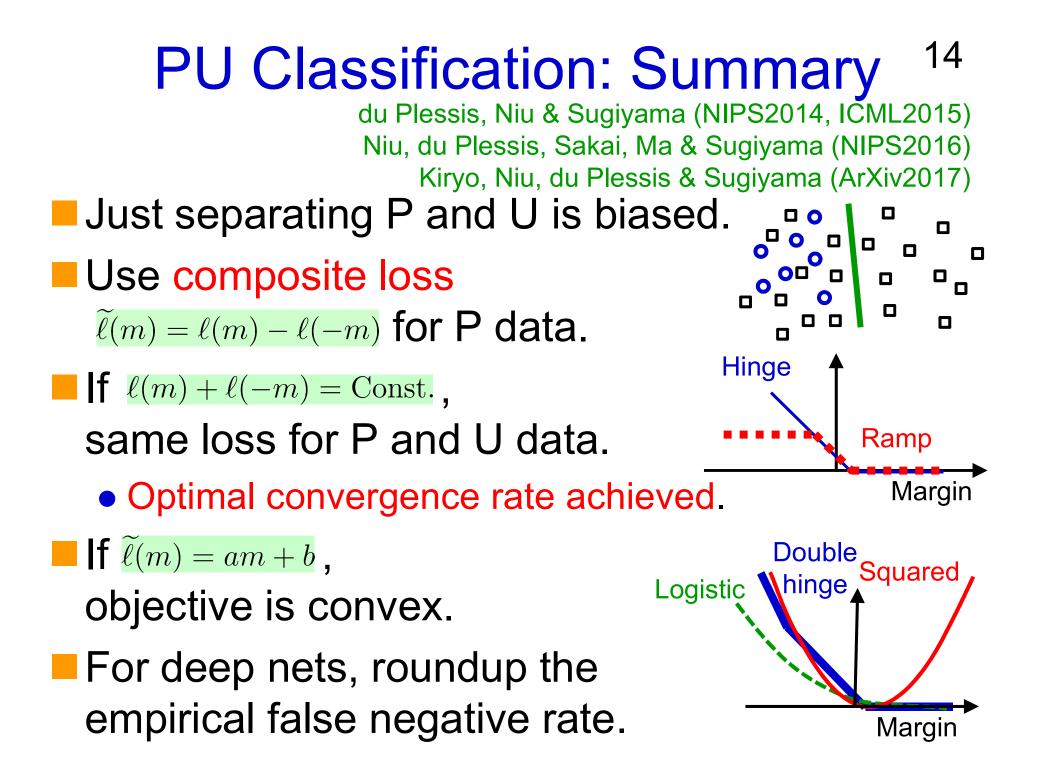
12 Implementation in MATLAB[®]

PU-LS

Essentially 1 line for linear least-squares!

Ordinary LS %Data generation n=50; m=150; p=50; a^{co}o x=randn(n+m,2); x(1:n+p,1)=x(1:n+p,1)-5;x(:,3)=1; u=x(n+1:end,:);-2 y=[ones(n+p,1); -ones(m-p,1)];X -3 ^L -8 figure(1); z=[ones(n,1); zeros(m,1)] -20 2 plot(x(y=1&z=1,1),x(y=1&z=1,2),bo');plot(x(y=1&z=0,1), x(y=1&z=0,2), ko');plot(x(y==-1,1),x(y==-1,2),kx');% Computing the solution $t=(u'*u/n+0.1*eye(3)) \setminus (2*p/m*mean(x(1:n,:))-mean(u))';$ $plot([-10 \ 10], -(t(3)+[-10 \ 10]*t(1))/t(2), k-');$

13 PU for Deep Networks ¹³ Kiryo, Niu, du Plessis & Sugiyama (arXiv2017) Population false negative rate is non-negative: $p(\boldsymbol{x}) = \pi p(\boldsymbol{x}|y = +1)$ $\int \ell \Big(-f(\boldsymbol{x}) \Big) (1-\pi) p(\boldsymbol{x}|\boldsymbol{y}=-1) \mathrm{d}\boldsymbol{x}$ $+(1-\pi)p(\boldsymbol{x}|\boldsymbol{y}=-1)$ $= \int \ell \Big(-f(\boldsymbol{x}) \Big) \Big(p(\boldsymbol{x}) - \pi p(\boldsymbol{x}|\boldsymbol{y} = +1) \Big) d\boldsymbol{x} \ge 0$ However, its PU empirical approximation can be 0.4 Plain PU test negative (in particular, PN test Non-negative PU test for flexible deep nets). **PN train** We impose it to be PN-test PN-train non-negative through -0.1 PU-train NNPU-test Plain PU trair -0.2 NNPU-train back-prop training: 500 100 150 200 350 Epoch $\max\{0, \hat{p}(\boldsymbol{x}) - \hat{\pi}\hat{p}(\boldsymbol{x}|y=+1)\}$



- 1. Classification of classification
- 2. PU classification
- 3. PNU (=PU+PN) classification
- 4. UU classification

Semi-Supervised ¹⁶ (PNU=PU+PN) Classification

Sakai, du Plessis, Niu & Sugiyama (arXiv2016)

PU data is enough for optimal learning.

 $\begin{aligned} & \mathsf{Convex \ combination \ of \ PU \ \& \ PN \ is \ still \ optimal!} \\ & R_{\mathrm{PU}+\mathrm{PN}}^{\gamma}(f) = \gamma R_{\mathrm{PU}}(f) + (1-\gamma)R_{\mathrm{PN}}(f) \quad 0 \le \gamma \le 1 \\ & R_{\mathrm{PN}}(f) = \pi \int \ell(f(x))p(x|y=+1)\mathrm{d}x + (1-\pi)\int \ell(-f(x))p(x|y=-1)\mathrm{d}x \\ & R_{\mathrm{PU}}(f) = \pi \int \tilde{\ell}(f(x))p(x|y=+1)\mathrm{d}x + \int \ell(-f(x))p(x)\mathrm{d}x \quad \tilde{\ell}(m) = \ell(m) - \ell(-m) \end{aligned}$

• Precisely, we switch PU+PN and NU+PN.

PU+PN Classification ¹⁷

$R_{\rm PU+PN}^{\gamma}(f) = \gamma R_{\rm PU}(f) + (1-\gamma)R_{\rm PN}(f) \quad 0 \le \gamma \le 1$

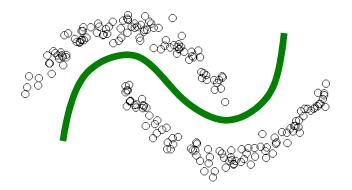
- We use unlabeled data for loss evaluation, not for regularization (as manifold smoothing).
 - Label information is extracted from unlabeled data!
- Generalization error bound:

 $R_{\ell_{0/1}}(f) \le 2\widehat{R}_{\rm PU+PN}^{\gamma}(f) + \mathcal{O}(1/\sqrt{n_{\rm P}} + 1/\sqrt{n_{\rm N}} + 1/\sqrt{n_{\rm U}})$

Unlabeled data helps without cluster assumptions!

 $n_{\rm P}, n_{\rm N}, n_{\rm U}$: # of positive, negative and unlabeled samples

 $\widehat{R}_{\rm PU+PN}^{\gamma}$: Empirical version of $R_{\rm PU+PN}^{\gamma}$



Numerical Results

Misclassification error rate: [average (std)]

5% t-test(Gradvalet & Bengio, (Belkin et al., (Niu et al., (Li et a NIPS2004) JMLR2006) ICML2013) JMLR20									
Dataset	$n_{ m u}$	π	$\widehat{\pi}$	PU+PN	EntReg	LapSVM	SMIR	WellSVM	
Arts	1000	0.50	0.49(0.01)	27.4(1.3)	26.6 (0.5)	$26.1 \ (0.7)$	40.1(3.9)	27.5(0.5)	
	5000	0.50	0.50(0.01)	24.8 (0.6)	26.1(0.5)	26.1(0.4)	30.1(1.6)	N/A	
	10000	0.50	0.52(0.01)	$25.6 \ (0.7)$	$25.4 \ (0.5)$	$25.5 \ (0.6)$	N/A	N/A	
Deserts	1000	0.73	0.67(0.01)	$13.0 \ (0.5)$	15.3(0.6)	16.7(0.8)	17.2(0.8)	18.2(0.7)	
	5000	0.73	0.67(0.01)	$13.4 \ (0.4)$	$13.3 \ (0.5)$	16.6(0.6)	24.4(0.6)	N/A	
	10000	0.73	0.68(0.01)	$13.3 \ (0.5)$	$13.7 \ (0.6)$	16.8(0.8)	N/A	N/A	
	1000	0.65	0.57(0.01)	22.4(1.0)	26.2(1.0)	26.6(1.3)	28.2(1.1)	26.6(0.8)	
Fields	5000	0.65	0.57(0.01)	20.6 (0.5)	22.6(0.6)	24.7(0.8)	29.6(1.2)	N/A	
	10000	0.65	$0.57\ (0.01)$	21.6 (0.6)	$22.5 \ (0.6)$	25.0(0.9)	N/A	N/A	
	1000	0.50	0.50(0.01)	11.4(0.4)	11.5 (0.5)	12.5(0.5)	17.4 (3.6)	11.7(0.4)	
Stadiums	5000	0.50	0.50(0.01)	$11.0 \ (0.5)$	10.9 (0.3)	$11.1 \ (0.3)$	13.4(0.7)	N/A	
	10000	0.50	$0.51 \ (0.00)$	$10.7 \ (0.3)$	$10.9 \ (0.3)$	$11.2 \ (0.2)$	N/A	N/A	
	1000	0.27	0.33(0.01)	21.8(0.5)	23.9(0.6)	24.1 (0.5)	30.1(2.3)	26.2(0.8)	
Platforms	5000	0.27	0.34(0.01)	23.3 (0.8)	24.4 (0.7)	24.9(0.7)	26.6(0.3)	N/A	
	10000	0.27	$0.34\ (0.01)$	$21.4 \ (0.5)$	24.3(0.6)	24.8(0.5)	N/A	N/A	
Temples	1000	0.55	$0.51 \ (0.01)$	43.9 (0.7)	43.9 (0.6)	43.4(0.6)	50.7(1.6)	44.3(0.5)	
			0.54(0.01)	· · · · ·	· · /	· · ·	43.6(0.7)	N/A	
	10000	0.55	0.50(0.01)	$45.2 \ (0.8)$	44.4 (0.8)	$44.2 \ (0.7)$	N/A	N/A	

PU+PN works the best!

Organization

- 1. Classification of classification
- 2. PU classification
- 3. PNU (=PU+PN) classification
- 4. UU classification

UU Classification: Setup²⁰

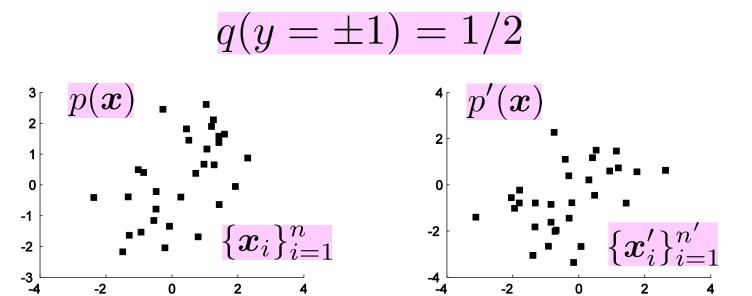
Given: Two sets of unlabeled data

$$\{\boldsymbol{x}_i\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} p(\boldsymbol{x}) \ \{\boldsymbol{x}'_i\}_{i=1}^{n'} \stackrel{\text{i.i.d.}}{\sim} p'(\boldsymbol{x})$$

Assumption: Only class-priors are different

$$p(y) \neq p'(y)$$
 $p(\boldsymbol{x}|y) = p'(\boldsymbol{x}|y)$

Goal: Learn a classifier for equal test class-prior



Optimal Classifier²¹

du Plessis, Niu & Sugiyama (TAAI2013)

Sign of the difference of class-posteriors:

$$g(\boldsymbol{x}) = \operatorname{sign}[p(y = +1|\boldsymbol{x}) - p(y = -1|\boldsymbol{x})]$$

Under equal test class-prior $q(y = \pm 1) = 1/2$,

$$g(\boldsymbol{x}) = C \operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$$

$$C = \text{sign}[p(y = +1) - p'(y = +1)]$$

Sign of *C* is unknown, but just knowing sign[p(x) - p'(x)]allows optimal classification!

Decision boundary

Estimation Method 1

 $\operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$

Difference of kernel density estimators:

- Estimate p(x), p'(x) from $\{x_i\}_{i=1}^n, \{x'_i\}_{i=1}^{n'}$ separately.
- Simple but systematic under-estimation of $p(\mathbf{x}) p'(\mathbf{x})$.

Anderson, Hall & Titterington (J. Multivariate Analysis 1994)

Estimation Method 2

$\operatorname{sign}[p(\boldsymbol{x}) - p'(\boldsymbol{x})]$

Direct density-difference estimation:

- Directly fit a model to $f(\boldsymbol{x}) = p(\boldsymbol{x}) p'(\boldsymbol{x})$ without explicitly estimating $p(\boldsymbol{x}), p'(\boldsymbol{x})$.
- Linear least-squares yields an analytic solution:

$$egin{aligned} \widehat{f} &= \operatorname*{argmin}_{\widetilde{f}} \int \left(\widetilde{f}(m{x}) - f(m{x})
ight)^2 \mathrm{d}m{x} \ &= \operatorname*{argmin}_{\widetilde{f}} \int \left(\widetilde{f}(m{x})
ight)^2 \mathrm{d}m{x} - 2 \int f(m{x}) \widetilde{f}(m{x}) \end{aligned}$$

Kim & Scott (IEEE-TPAMI2010) Sugiyama, Suzuki, Kanamori, du Plessis, Liu & Takeuchi (NIPS2012, NeCo2013) $\mathrm{d} x$

 $\mathcal{O}\left(n^{-1/2}\right)$ convergence under proper setting.

Least-Squares Density Difference (LSDD): MATLAB[®] Implementation Essentially only 1 line!

% Data generation

n=400; x=randn(1,n/2); y=randn(1,n/2)+1; z=[x y];

a=repmat(z.^2,n,1); b=a+a'-2*z'*z; G=sqrt(pi)*exp(-b/4);

h=mean(exp(-b(:,1:n/2)/2),2)-mean(exp(-b(:,n/2+1:n)/2),2);

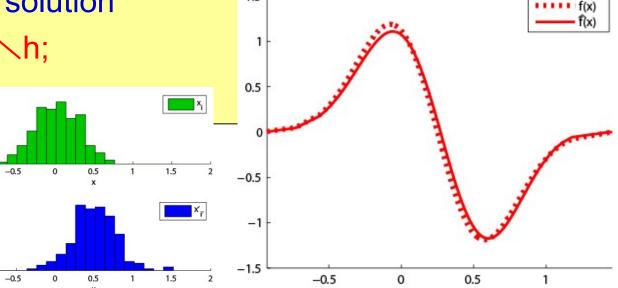
% Computing the solution t=(G+0.1*eye(n))h;

10

30

20 10

plot(z,G*t,'*');



х

1.5

Estimation Method 3
Direct sign density-difference (DSDD)
estimation:

$$du$$
 Plessis, Niu & Sugiyama (TAAI2013)
 $sign[p(x) - p'(x)] dx$ is the solution of
 $sup_r \int r(x)[p(x) - p'(x)] dx$ This corresponds to maximizing
 $subject$ to $|r(x)| \le 1$
This corresponds to maximizing
Fenchel dual lower-bound of L¹-distance:
 $\int |p(x) - p'(x)| dx$ Keziou (2003)
 $\int |p(x) - p'(x)| dx$ Keziou (2003)
 $\int |p(x) - p'(x)| dx$ Region (2003)
 $R(x) = \min(1, \max(-1, r(x)))$

Since it is non-convex, we use the convex-concave procedure (CCCP) to obtain a local solution.
 \$\mathcal{O}(n^{-1/2})\$ convergence under proper setting.

Numerical Results

26

Misclassification error rate: [average (std)]

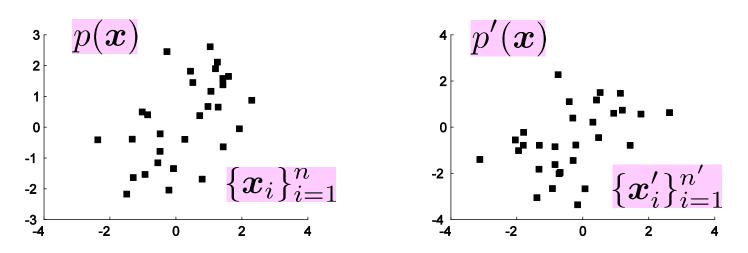
		UU class	sification	Clustering	Spectral Ng et al.	Infomax Sugiyama et al.
S	$\operatorname{ign}[p(oldsymbol{x}) - p'(oldsymbol{x})]$] p(x) - p'(x)	$p(\boldsymbol{x}) = p(\boldsymbol{x}), p'(\boldsymbol{x})$) k-means	(NIPS2001)	(ICML2011)
Dataset	DSDD	LSDD	KDE	KM	SC	SMIC
australian	.244(.116)	.259(.088)	.355(.104)	.265(.080)	.376(.065)	.308 (.107)
banana	.338(.094)	.339(.100)	.365(.067)	.433(.049)	.427(.069)	.424 (.070)
diabetes	.340(.075)	.361 (.124)	.345(.034)	.373(.063)	.380(.048)	.371 (.114)
german	.375(.042)	.380(.093)	.354(.057)	.437(.024)	.445(.057)	.438 (.041)
heart	.270(.133)	.247(.084)	.354(.052)	.264(.059)	.315(.081)	.327 (.089)
image	.331(.078)	.350(.067)	.350(.039)	.384(.031)	.354(.049)	.382 (.050)
ionosphere	.291 (.099)	.356(.066)	.345(.048)	.330(.070)	.322(.058)	.314 (.107)
saheart	.378(.093)	.353(.057)	.363(.066)	.419(.082)	.395(.022)	.385 (.040)
thyroid	.227 (.098)	.251(.087)	.302(.022)	.326(.061)	.329(.047)	.307 (.076)
twonorm	.164(.188)	.153(.121)	.352(.096)	.036(.053)	.042(.122)	.049 (.120)

n = n' = 40 p(y = +1) = 0.35 p'(y = +1) = 0.65

UU classification with direct estimation of (sign of) density difference works well !

UU Classification: Summary ²⁷

du Plessis, Niu & Sugiyama (TAAI2013)



Given two sets of unlabeled data with different class-priors, estimate the sign of difference of class-posteriors: sign[p(x) - p'(x)]

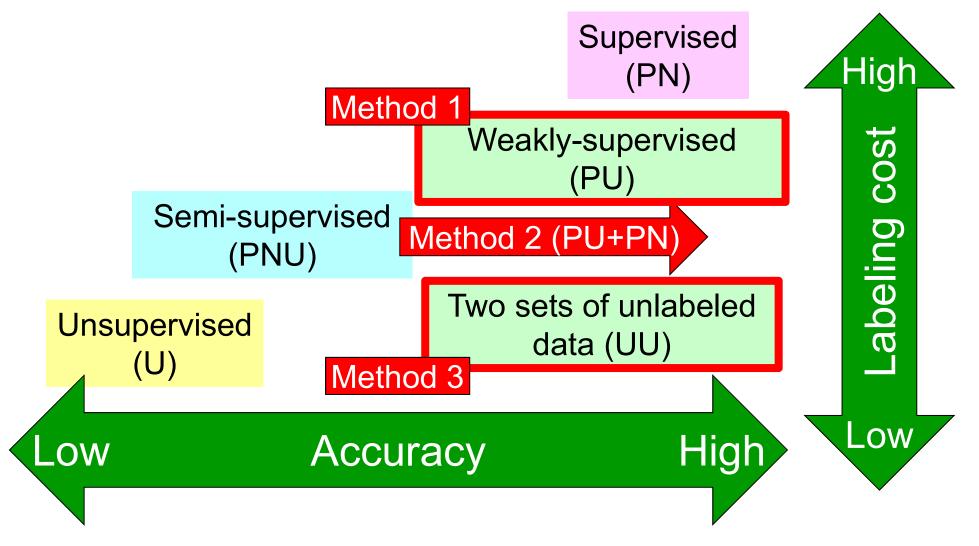
Same convergence rate as fully supervised case can be achieved!

- 1. Classification of classification
- 2. PU classification
- 3. PNU (=PU+PN) classification
- 4. UU classification

Summary

29

Classification with high accuracy and low labeling cost is practically important!



RIKEN Center for AIP

- RIKEN founded Center for Advanced Intelligence Project (AIP) in 2016.
- Our missions:

CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

- 1. Development of next-generation AI technology (understand deep learning, go beyond deep learning)
- 2. Acceleration of scientific research (iPS cells, manufacturing, materials...)
- 3. Contribution to solving socially critical problems (healthcare for super-aged society, disaster resilience, infrastructure management...)
- 4. Study of ethical, legal and social issues of AI.
- 5. Human resource development (academia & industry).

Organization of AIP Center ³¹

2017 May

Various application domains (companies, universities, research institutes, etc.)

Goal-Oriented Technology Research Group: Abstract complex real-world problems into solvable forms (22 PIs, 30 researchers, 21 students)

> Generic Technology Research Group: Develop fundamental theory and algorithms for abstracted problems (18 PIs, 41 researchers, 30 students)

Artificial Intelligence in Society Research Group: Analyze the influence of AI spreading in society (8 PIs, 10 researchers)

180 research staffs + 17 secretaries

Our Office in the Heart of Tokyo!

- Directly connected to Tokyo Metro Nihonbashi Station.
- •6-min walk from Tokyo Station.

Visit us!

