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Our laboratory’s interest
Computational principles linking brain
mechanisms and behavior
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Our efforts to expand the field

By way of demonstrations
“seguential, contextual
(successive), and social”



Reminders: reinforcement learning,
dopamine, basal ganglia



Dopamine (DA) activity
Reward prediction error hypothesis (Schultz et al. 1997)

- Signaling reward prediction error (= TD error)
- Functioning as TD learning signal

Temporal difference learning (TD learning)
~ the most representative RL algorithm

TD learning : TD error & value
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Sequential

https://www.flickr.com/photos/vardolath/7321553930/sizes/I/
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Experiment: 2x5 task
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Functional differentiation (blockade by muscimol injection)

The decrease of the performance varied
depending on the blocked area.
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Cortico-basal ganglia loops
-- parallel representation for sequence learning

Concurrent learning in visual and motor presentations
-- different computational advantage
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Three stages for sequence learning
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- Continuous control

- Similarity 3 stages — alpha GO
- Multiple systems in consort
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Results: validation by simulations

--- Learning process In training period

--- Role of each function module

--- Effect of resetting the immediate visual mapping
--- Reverse hyperset simulation

--- Opposite hand simulation

--- DA dysfunction simulation

--- Blockade simulations:
(1)the visual network, (2) the motor network, (3) the coordinator

Important to examine multiple aspects



Only show a few
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simulation

Reverse hyperset simulation
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Conclusion

Parallel representation hypothesis for
sequential control and learning

Rapid acquisition & robust execution of sequences is realized by
cooperation of the parallel BG loops, using different characteristics of
different representations and learning signals of DA neurons.
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Contextual (successive)

Where are we with our current understanding of
neural RL, especially about dopamine?



Our guiding hypothesis!!
Reward prediction error hypothesis

Dopamine activity reports reward prediction error

and works as learning signal for reward prediction
i (and action selection)
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Reward prediction error hypothesis
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In that sense, reward prediction of the hypothesis
(in practice) is a core, or specific prediction

-- representation vs prediction

What if DA can report “better” RPE...  __ model-free vs model-based



Task 1 (non-contextual task)

Classical conditioning task with 50 % reward probability
TD learning rule
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Task 2 (contextual task)

Task: an asymmetrically-rewarded memory-guided saccade task
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DA activities can represent reward prediction error
reflecting latent task structure over trials
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Early instantiation: DA activity can be ‘better’ RPE error
than the “default-model-free” RPE.

(in that sense, sort of “model-based” RPE (Nakahara et al 2004, Neuron)
w.r.t. the default)



Representation and prediction of ‘model-free’

Reward prediction error (RPE) as learning signal
< Reward prediction (RP) learned

RP learned is limited by:
- information in RPE about reward statistics
- state representation: capability to distinguish

DA being better RPE than the default-model-free RPE

-- The better RPE Is based on a better RP than the default RP.
-- The better RPE leads to a better model-free RP in learning

DA activity is a better TD error Convention -- recent external event

cf: LHb, Caudate
(Nakahara et al 2004; Bromberg-Martin et al 2010; Nakamura et al 2012)



Our suggestion:

DA reward structural learning hypothesis

Environment” Learning to represent reward structure,
f - . 0
(external event) with better reward prediction
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Social

We like to understand brain functions,
ultimately human brain functions.






“Social”

— with the mind of others

“Simulating” others’ internal
decision-making process

e Apparently very complex

- behavior and “mind”

e Computation is key



"Social’ — with the mind of others

“Simulating” others’ internal
decision-making process



Extend RL frameworks for quantitative social decision making
Ask “social” questions in RL rather than apply RL to “social” Qs
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Learning to simulate others’ decisions

Two simulation-learning signals:
“We are the same” and “We are different”

P< 0.0_001
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