

Motor Learning Methods for Humanoid Control

Jun Morimoto
Dept . of Brain Robot Interface
ATR Computational Neuroscience Labs

Outline

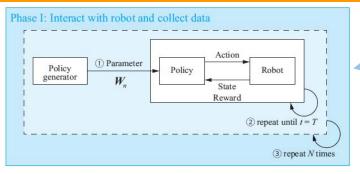
- Efficiently using collected data.
- Learning from demonstration.
- Hierarchical learning architecture.

Efficiently using collected data

Using Previous Experiences as Simulation Models

[Sugimoto, Sugiyama, Morimoto et al., IEEE Robot. Automat. Mag., 2016]

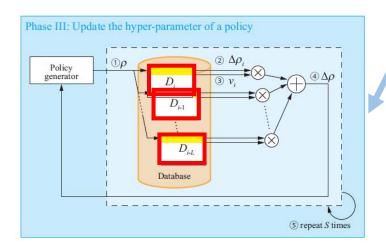
Dept. of Brain Robot Interface, ATR



Phase 1: Collect data from real environment using policy stochastically generated with policy generator (hyper-parameter).

Database

Phase 2: Add collected data to database.



generated policy parameter

Phase 3: Update policy's hyper-parameter using stored data as simulation models.

Basketball shooting task

Basketball-shooting Task

Dept. of Brain Robot Interface, ATR

[Sugimoto, Sugiyama, Morimoto et al., IEEE Robot. Automat. Mag., 2016]

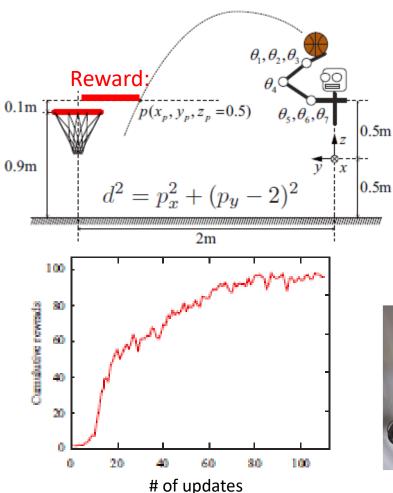
Policy model: $\mathbf{u}(t) = \mathbf{w}^T \phi(t)$

Desired joint angle Policy parameter

Policy generator: $p(\mathbf{w} \mid \underline{\rho})$

Hyper parameter

Gradient was estimated based on IW-PGPE. [T. Zhao, M. Sugiyama et al., Neural Computation, 2013]



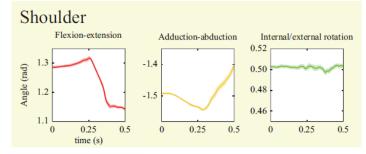
Result

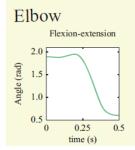
[Sugimoto, Sugiyama, Morimoto et al., IEEE Robot. Automat. Mag., 2016]

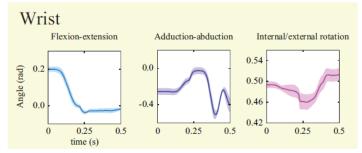
Acquired Basket-ball Shooting Joint Trajectories

Dept. of

ace, ATR





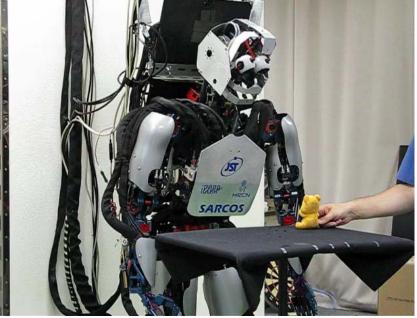


Learning from demonstration

Learning from Demonstration

Dept. of Brain Robot Interface, ATR

[Ude, Morimoto et al., IEEE Trans. on Robotics, 2010]



Learning from Demonstration

Dept. of Brain Robot Interface, ATR

Dynamic Movement Primitives

[Ijspeert et al., 2002]

Point attractor dynamics:

$$\tau \dot{z} = \alpha_z (\beta_z \mathbf{g} - y) - z) + f(x)$$

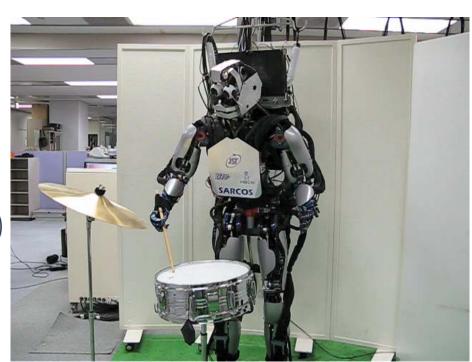
$$\tau \dot{y} = z$$

Phase-dependent modulation input:

$$f(x) = \frac{\sum_{i=1}^{N} \psi_{i}(x)}{\sum_{i=1}^{N} \Psi_{i}(x)} x, \ \Psi_{i}(x) = \exp\left(-h_{i} (x - c_{i})^{2}\right)$$

Phase:

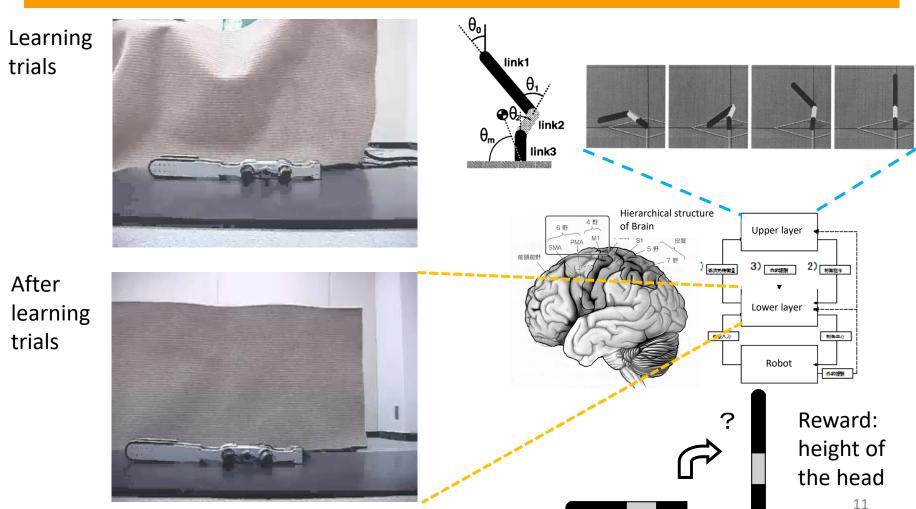
$$\tau \dot{x} = -\alpha_x x$$



[Ude, Morimoto et al., IEEE Trans. on Robotics, 2010]

Hierarchical Reinforcement Learning: Application to Stand-up Movements

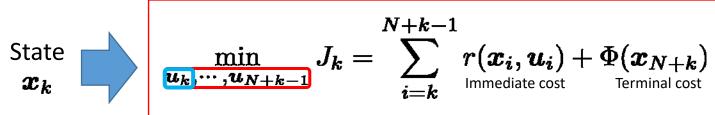
[Morimoto and Doya, 2001]



Hierarchical learning architecture

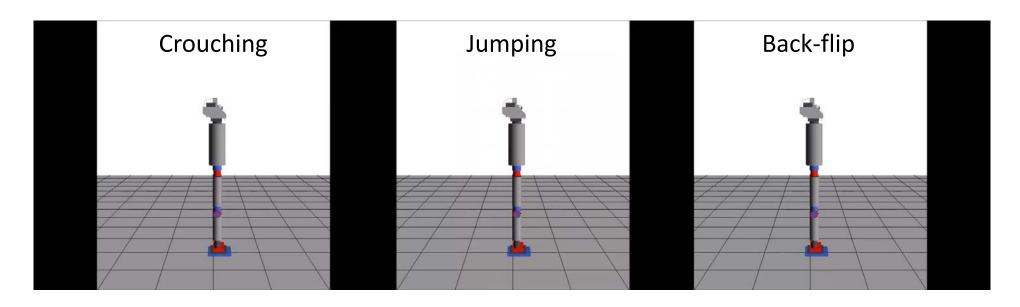
Model Predictive Control (MPC)

- Online derivation of the optimal control trajectory at each time step, using the first control output.
- Although each optimal control trajectory provides feedforward controller, MPC effectively works as feedback control policy due to the optimal control trajectory calculation at each time step.



MPC Can be Used to Generate Variety of Motions

Dept. of Brain Robot Interface, ATR



 Optimal control trajectories derived at each time step: MPC is computationally intensive and not applicable to real-time/many-DoF robot control (e.g. humanoids) to generate fast and dynamic movements.

Hierarchical MPC Strategy with Singular Perturbed System

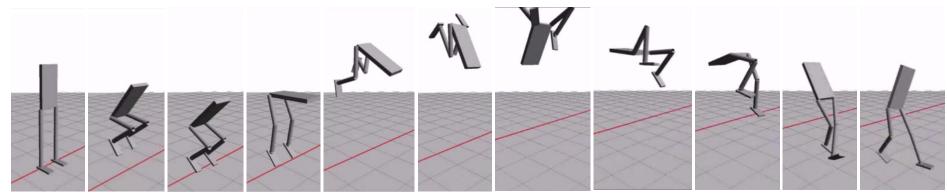
[Ishihara and Morimoto, Humanoids, 2015] Computationally intensive Coarse and decomposition **Prediction length** long-term **Original Task** ▶ [Arimoto & Miyazaki, 1983] optimization Fine and **Fast Dynamics** short-term optimization Time resolution **Upper layer:** Longer time horizon with larger time step in MPC framework. Derive movement trajectory that involves longer-term effect but coarse planning in terms of control frequency. Lower laver:

- Shorter time horizon with smaller time step in MPC framework.
- Derive movement trajectory that involves shorter-term effect but fine planning in terms of control frequency. 15

Toward Agile Movement Like Human Experts

Dept. of Brain Robot Interface, ATR

Generated front flip movement by using the proposed method:



Discussion:

Stable Interactions between Different Learning Systems

Dept. of Brain Robot Interface, ATR **Efficiently using collected data Learning from demonstration** CB-I Humanoid Robot **Hierarchical learning architecture** Upper-layer learning system Lower-layer learning system This robot has a total of 51 DOFs. Its eyes are driven by electricity, its hands are pneumatic, and others are hydraulic pressure. DOFs are controlled by a microcontroller that has partial position and force feedback control functions.

This study was supported by NEDO and JSPS KAKENHI.