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Outline

* Efficiently using collected data.
* Learning from demonstration.
* Hierarchical learning architecture.



Efficiently using collected data



Using Previous Experiences as

[Sugimoto, Sugiyama, Morimoto et al.,

Si m u I atio n M Od e I S IEEE Robot. Automat. Mag., 2016]

Phase I: Interact with robot and collect data
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(3) repeat N times
Phase II: Add the experienced data to database
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Phase III: Update the hyper-parameter of a policy

Policy
generator

(5} repeat § times

Phase 1: Collect data from real environment
using policy stochastically generated with
policy generator (hyper-parameter).

Phase 2: Add collected data to database.

Phase 3: Update policy’s hyper-parameter
using stored data as simulation models.

Basketball shooting task



Basketball-shooting Task

[Sugimoto, Sugiyama, Morimoto et al.,
IEEE Robot. Automat. Mag., 2016]

Policy model: ll(t) =w' ¢(t)
Policy parameter

Policy generator: p(w | ,Q_)
Hyper parameter

Gradient was estimated based on
IW-PGPE. [T.zhao, M. Sugiyama et al.,

Neural Computation, 2013]
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Re s u It [Sugimoto, Sugiyama, Morimoto et al.,

IEEE Robot. Automat. Mag., 2016]
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Learning from demonstration



Learning from Demonstration

[Ude, Morimoto et al., IEEE Trans. on Robotics, 2010]




Learning from Demonstration
Dept. of Brain Robot Interfacei ATR

[Ude, Morimoto et al., IEEE Trans. on Robotics, 2010]

Dynamic Movement Primitives
[ljspeert et al., 2002]

Point attractor dynamics:
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Phase-dependent modulation input:
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Hierarchical Reinforcement
Learning: Application to
Stand-up Movements . [Morimoto and Doya, 2001]

ept. of Brain Robot Interface, ATR
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Hierarchical learning architecture



Model Predictive Control (MPC)

State
o

* Online derivation of the optimal control trajectory
at each time step, using the first control output.

* Although each optimal control trajectory provides

feedforward controller, MPC effectively works as feedback
control policy due to the optimal control trajectory
calculation at each time step.
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MPC Can be Used to Generate
Variety of Motions

Crouching Jumping Back-flip

e Optimal control trajectories derived at each time step:
MPC is computationally intensive and not applicable
to real-time/many-DoF robot control (e.g. humanoids)
to generate fast and dynamic movements.



Hierarchical MPC Strategy with

decomposition

® [Arimoto & Miyazaki, 1983]
°

Fast Dynamics

H

Upper layer:

Lower layer:

e Shorter time horizon with smaller time step in MPC framework.

rediction length

Smgular Perturbed System

[Ishihara and Morimoto, Humanoids, 2015]

Computationally

intensive
Coarse and
long-term Original Task
optimization
Fine and
short-term

optimization

v

Time resolution

e Longer time horizon with larger time step in MPC framework.
* Derive movement trajectory that involves longer-term effect
but coarse planning in terms of control frequency.

* Derive movement trajectory that involves shorter-term effect

but fine planning in terms of control frequency.
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Toward Agile Movement
Like Human Experts
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Generated front flip movement by using the proposed method:
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Discussion:

Stable Interactions between
Different Learning Systems

Efficiently using collected data

Learning from demonstration

This study was supported by NEDO and JSPS KAKENHI.

Upper-layer learning system
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