Nonlinear ICA using temporal structure: A principled framework for unsupervised deep learning

Aapo Hyvärinen with Hiroshi Morioka

Gatsby Unit, University College London, UK Dept of Computer Science, University of Helsinki, Finland

A (1) > A (2) > A

Abstract

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

How to extract nonlinear features from multi-dimensional data when there are no labels (unsupervised)?

Abstract

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロン イヨン イヨン イヨン

- How to extract nonlinear features from multi-dimensional data when there are no labels (unsupervised)?
- We use temporal structure in time series
 - in two different ways, two different methods

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イヨト イヨト イヨト

Abstract

- How to extract nonlinear features from multi-dimensional data when there are no labels (unsupervised)?
- We use temporal structure in time series
 - in two different ways, two different methods
- First cases of provably identifiable (well-defined) nonlinear ICA.

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

Abstract

- How to extract nonlinear features from multi-dimensional data when there are no labels (unsupervised)?
- We use temporal structure in time series
 - in two different ways, two different methods
- First cases of provably identifiable (well-defined) nonlinear ICA.
- A new principled framework for unsupervised deep learning

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

Background: Towards principled unsupervised learning

Unsupervised deep learning is a largely unsolved problem

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

Background: Towards principled unsupervised learning

- Unsupervised deep learning is a largely unsolved problem
- Important because often labelled data costly to obtain

イロト イポト イヨト イヨト

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロト ・回ト ・ヨト

Background: Towards principled unsupervised learning

- Unsupervised deep learning is a largely unsolved problem
- Important because often labelled data costly to obtain
- Probabilistic models with latent variables offer a powerful principled approach

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

<ロ> (日) (日) (日) (日) (日)

Background: ICA as principled unsupervised learning

Linear independent component analysis (ICA)

$$x_i(t) = \sum_{j=1}^n a_{ij} s_j(t) \quad \text{for all } i, j = 1 \dots n \tag{1}$$

- $x_i(t)$ is *i*-th observed signal in time point t
- a_{ij} constant parameters describing "mixing"
- Assuming independent, non-Gaussian "sources" s_j
- ► ICA is identifiable, i.e. well-defined: (Darmois-Skitovich 1950; Comon, 1994)
 - Observing only x_i we can recover both a_{ij} and s_j
 - ► I.e. original sources can be recovered

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?

Evaluate by e.g. Kullback-Leibler divergence

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images
- 3) Useful features for supervised learning?
 - Evaluate e.g. by classification accuracy in benchmark data

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロン イヨン イヨン イヨン

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images
- 3) Useful features for supervised learning?
 - Evaluate e.g. by classification accuracy in benchmark data
- 4) Reveal underlying structure in data?
 - Evaluation difficult, e.g. expert opinion

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロト ・日本 ・モート ・モート

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images
- 3) Useful features for supervised learning?
 - ► Evaluate e.g. by classification accuracy in benchmark data
- 4) Reveal underlying structure in data?
 - Evaluation difficult, e.g. expert opinion
 - These criteria are orthogonal, even contradictory!

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images
- 3) Useful features for supervised learning?
 - ► Evaluate e.g. by classification accuracy in benchmark data
- 4) Reveal underlying structure in data?
 - Evaluation difficult, e.g. expert opinion
 - These criteria are orthogonal, even contradictory!
 - ▶ 1 & 2 essentially non-parametric problems, 3 & 4 parametric

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

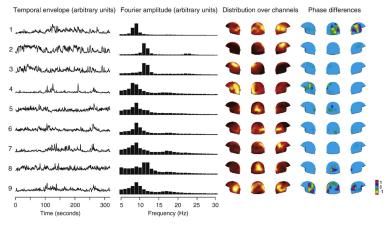
イロト イポト イヨト イヨト

- 1) Accurate model of data distribution?
 - Evaluate by e.g. Kullback-Leibler divergence
- 2) Sampling points from data distribution?
 - Evaluate more or less visually, for images
- 3) Useful features for supervised learning?
 - ► Evaluate e.g. by classification accuracy in benchmark data
- 4) Reveal underlying structure in data?
 - Evaluation difficult, e.g. expert opinion
 - These criteria are orthogonal, even contradictory!
 - ▶ 1 & 2 essentially non-parametric problems, 3 & 4 parametric
 - Goal in ICA (this talk) is 4)

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イヨト イヨト イヨト

Applications of ICA: Brain source separation



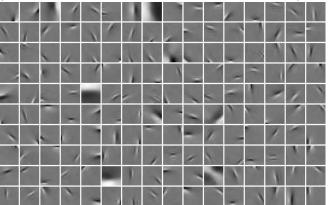
(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イヨト イヨト イヨト

Applications of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)



Features similar to wavelets, Gabor functions, simple cells.

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロン イヨン イヨン イヨン

Extension: Topographic ICA

(Hyvärinen and Hoyer, 2001)

Topography similar to what is found in the cortex.

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

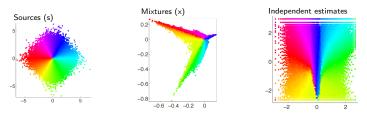
Background: Nonlinear ICA is an unsolved problem

- Extend ICA to nonlinear case to get deep learning?
- Unfortunately, "basic" nonlinear ICA is not identifiable:
- If we define nonlinear ICA model simply as

$$x_i(t) = f_i(s_1(t), \dots, s_n(t)) \quad \text{for all } i, j = 1 \dots n \qquad (2)$$

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)

- For any x_1, x_2 , we can always find $g(x_1, x_2)$ independent of x_1 .
- Assuming we only consider marginal distribution over time

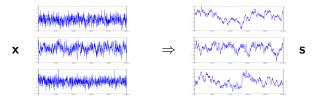


ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

Background: Temporal correlations help in ICA

Harmeling et al (2003) suggested using temporal structure



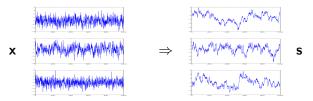
► Related to finding "slow" features (Földiák, 1991; Wiskott and Sejnowski, 2002)

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロト ・日本 ・モート ・モート

Background: Temporal correlations help in ICA

Harmeling et al (2003) suggested using temporal structure



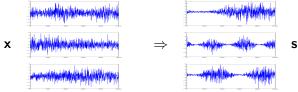
► Related to finding "slow" features (Földiák, 1991; Wiskott and Sejnowski, 2002)

- Identifiability?
 - Linear: Yes, if autocorrelations distinct for different sources (Tong et al 1991; Belouchrani et al, 1997)
 - Nonlinear: Unknown, although encouraging simulations

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

Background: Temporal structure as nonstationarity

 An alternative principle for ICA: Sources are nonstationary (Matsuoka et al, 2005)



E.g. variances of the sources can be nonstationary

$$s_i(t) \sim \mathcal{N}(0, \sigma_i^2(t))$$
 (3)

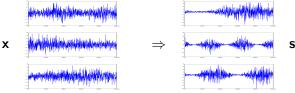
Many data sets have such nonstationarity

Video, speech, EEG/MEG, financial time series

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

Background: Temporal structure as nonstationarity

 An alternative principle for ICA: Sources are nonstationary (Matsuoka et al, 2005)



E.g. variances of the sources can be nonstationary

$$s_i(t) \sim \mathcal{N}(0, \sigma_i^2(t))$$
 (3)

- Many data sets have such nonstationarity
 - Video, speech, EEG/MEG, financial time series
- Identifiability?
 - Linear: Yes, no problem (Pham and Cardoso, 2001)
 - Nonlinear: Unknown, almost never attempted

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

・ロン ・回 と ・ヨン ・ヨン

3

Contributions in this talk

We present two methods for nonlinear ICA

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロン イヨン イヨン イヨン

3

Contributions in this talk

- We present two methods for nonlinear ICA
- Methods extend linear separation principles above
 - Temporal dependencies
 - Nonstationarity

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

Contributions in this talk

- We present two methods for nonlinear ICA
- Methods extend linear separation principles above
 - Temporal dependencies
 - Nonstationarity
- ▶ We use logistic regression in NN with artificially defined labels
 - Turning unsupervised learning into supervised
 - Cf. noise-contrastive learning, GAN

ICA as principled unsupervised learning Difficulty of nonlinear ICA Nonlinear ICA and time structure

イロト イポト イヨト イヨト

Contributions in this talk

- We present two methods for nonlinear ICA
- Methods extend linear separation principles above
 - Temporal dependencies
 - Nonstationarity
- ▶ We use logistic regression in NN with artificially defined labels
 - Turning unsupervised learning into supervised
 - Cf. noise-contrastive learning, GAN
- Both methods proven to separate nonlinearly mixed sources
- ▶ We have constructive proofs of identifiability for nonlinear ICA

Definition Convergence/identifiability theory Experiments

Method I: Time-contrastive learning (NIPS2016)

Outline

 We learn features that enable discriminating data points from different time segments

イロト イヨト イヨト イヨト

Definition Convergence/identifiability theory Experiments

Method I: Time-contrastive learning (NIPS2016)

Outline

- We learn features that enable discriminating data points from different time segments
- We use ordinary neural network training: Last hidden layer gives the features

イロト イポト イヨト イヨト

Definition Convergence/identifiability theory Experiments

Method I: Time-contrastive learning (NIPS2016)

Outline

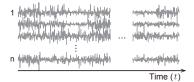
- We learn features that enable discriminating data points from different time segments
- We use ordinary neural network training: Last hidden layer gives the features
- Surprising theoretical result: Estimates a nonlinear ICA model
 - with general nonlinear mixing $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$.
 - nonstationary components $s_i(t)$

イロト イポト イヨト イヨト

Definition Convergence/identifiability theory Experiments

Time-contrastive learning: Definition

• Observe *n*-dim time series $\mathbf{x}(t)$

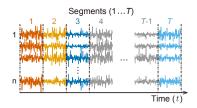


イロト イヨト イヨト イヨト

Definition Convergence/identifiability theory Experiments

Time-contrastive learning: Definition

- Observe *n*-dim time series $\mathbf{x}(t)$
- Divide x(t) into T segments (e.g. bins with equal sizes)

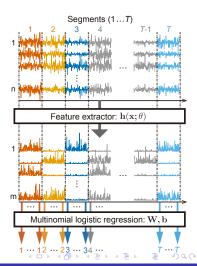


イロト イポト イヨト イヨト

Definition Convergence/identifiability theory Experiments

Time-contrastive learning: Definition

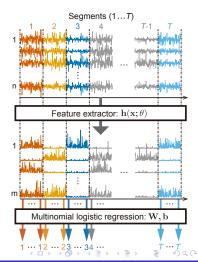
- Observe *n*-dim time series $\mathbf{x}(t)$
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is *T*, labels given by index of segment
 - Multinomial logistic regression



Definition Convergence/identifiability theory Experiments

Time-contrastive learning: Definition

- Observe *n*-dim time series $\mathbf{x}(t)$
- Divide x(t) into T segments (e.g. bins with equal sizes)
- Train MLP to tell which segment a single data point comes from
 - Number of classes is *T*, labels given by index of segment
 - Multinomial logistic regression
- In hidden layer h, MLP should learn to represent nonstationarity
 - (= differences between segments)



Definition Convergence/identifiability theory Experiments

Theorem: TCL estimates nonlinear nonstationary ICA

- > Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
 - independent sources $s_i(t)$ with nonstationary variances

- 4 同 6 4 日 6 4 日 6

Definition Convergence/identifiability theory Experiments

Theorem: TCL estimates nonlinear nonstationary ICA

- ▶ Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - smooth, invertible nonlinear mixing $\mathbf{f}:\mathbb{R}^n o \mathbb{R}^n$
 - independent sources $s_i(t)$ with nonstationary variances
- Assume we apply time-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between time segments
 - using MLP with hidden layer in $\mathbf{h}(\mathbf{x}(t))$ with dim $(\mathbf{h}) = \dim(\mathbf{x})$

Definition Convergence/identifiability theory Experiments

Theorem: TCL estimates nonlinear nonstationary ICA

- ▶ Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - \blacktriangleright smooth, invertible nonlinear mixing $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^n$
 - independent sources $s_i(t)$ with nonstationary variances
- Assume we apply time-contrastive learning on $\mathbf{x}(t)$
 - ▶ i.e. logistic regression to discriminate between time segments
 - using MLP with hidden layer in $\mathbf{h}(\mathbf{x}(t))$ with dim $(\mathbf{h}) = \dim(\mathbf{x})$
- Then, s(t)² = Ah(x(t)) for some linear mixing matrix A. (Squaring is element-wise)

Definition Convergence/identifiability theory Experiments

Theorem: TCL estimates nonlinear nonstationary ICA

- ▶ Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - \blacktriangleright smooth, invertible nonlinear mixing $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^n$
 - independent sources $s_i(t)$ with nonstationary variances
- Assume we apply time-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between time segments
 - using MLP with hidden layer in $\mathbf{h}(\mathbf{x}(t))$ with dim $(\mathbf{h}) = \dim(\mathbf{x})$
- Then, s(t)² = Ah(x(t)) for some linear mixing matrix A. (Squaring is element-wise)
- I.e.: TCL demixes nonlinear ICA model up to linear mixing (which can be estimated by linear ICA) and up to squaring.
- This is a constructive proof of identifiability

イロン イヨン イヨン イヨン

Definition Convergence/identifiability theory Experiments

Theorem: TCL estimates nonlinear nonstationary ICA

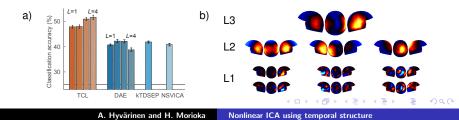
- ▶ Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - \blacktriangleright smooth, invertible nonlinear mixing $\mathbf{f}:\mathbb{R}^n\to\mathbb{R}^n$
 - independent sources $s_i(t)$ with nonstationary variances
- Assume we apply time-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between time segments
 - using MLP with hidden layer in $\mathbf{h}(\mathbf{x}(t))$ with dim $(\mathbf{h}) = \dim(\mathbf{x})$
- Then, s(t)² = Ah(x(t)) for some linear mixing matrix A. (Squaring is element-wise)
- I.e.: TCL demixes nonlinear ICA model up to linear mixing (which can be estimated by linear ICA) and up to squaring.
- This is a constructive proof of identifiability
- Generalizations: exponential families, dimension reduction

イロン イヨン イヨン イヨン

Definition Convergence/identifiability theory Experiments

Experiments with brain imaging data

- MEG data (like EEG but better)
- Sources estimated from resting data (no stimulation)
- a) Validation by classifying another data set with four stimulation modalities: visual, auditory, tactile, rest.
 - Trained a linear SVM on estimated sources
 - Number of layers in MLP ranging from 1 to 4
- b) Attempt to visualize nonlinear processing



Definition Convergence/identifiability theory Simulations

Method II: Permutation-contrastive learning (AISTATS2017)

Outline

We learn features that enable discriminating between short time windows of real data vs. time-shuffled (permuted) data

- 4 同 6 4 日 6 4 日 6

Definition Convergence/identifiability theory Simulations

Method II: Permutation-contrastive learning (AISTATS2017)

Outline

- We learn features that enable discriminating between short time windows of real data vs. time-shuffled (permuted) data
- Again, ordinary NN training: Last hidden layer gives the features

- 4 同 6 4 日 6 4 日 6

Definition Convergence/identifiability theory Simulations

Method II: Permutation-contrastive learning (AISTATS2017)

Outline

- We learn features that enable discriminating between short time windows of real data vs. time-shuffled (permuted) data
- Again, ordinary NN training: Last hidden layer gives the features
- Surprising (again!) theoretical result: Estimates a nonlinear ICA model
 - with general nonlinear mixing $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$.
 - stationary components $s_i(t)$ with temporal dependencies

Definition Convergence/identifiability theory Simulations

Permutation-contrastive learning: Definition

• Observe *n*-dim time series $\mathbf{x}(t)$

・ロト ・回ト ・ヨト ・ヨト

æ

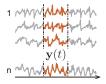
Definition Convergence/identifiability theory Simulations

Permutation-contrastive learning: Definition

• Observe *n*-dim time series $\mathbf{x}(t)$

Take short time windows as new data

$$\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$$



|| (同) || (三) (=)

Definition Convergence/identifiability theory Simulations

Permutation-contrastive learning: Definition

• Observe *n*-dim time series $\mathbf{x}(t)$

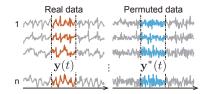
Take short time windows as new data

 $\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$

Create randomly time-permuted data

 $\mathbf{y}^*(t) = \big(\mathbf{x}(t), \mathbf{x}(t^*)\big)$

with t^* a random time point.



Definition Convergence/identifiability theory Simulations

Permutation-contrastive learning: Definition

• Observe *n*-dim time series $\mathbf{x}(t)$

Take short time windows as new data

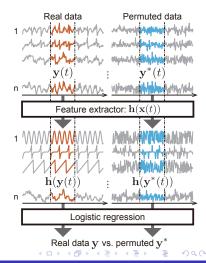
 $\mathbf{y}(t) = \big(\mathbf{x}(t), \mathbf{x}(t-1)\big)$

Create randomly time-permuted data

 $\mathbf{y}^*(t) = \big(\mathbf{x}(t), \mathbf{x}(t^*)\big)$

with t^* a random time point.

- Train MLP to discriminate y from y*
 - Ordinary nonlinear logistic regression with two classes
 - "Siamese" structure over time



Nonlinear ICA using temporal structure

Definition Convergence/identifiability theory Simulations

Definitions for convergence theory

• Denote
$$x = s_i(t)$$
 and $y = s_i(t-1)$, and

$$q_{x,y}(x,y) := rac{\partial^2 \log p_{x,y}(x,y)}{\partial x \partial y}$$

Define (x, y) is quasi-Gaussian if

$$q_{x,y}(x,y) = c \alpha(x) \alpha(y)$$

Intuitively, dependency is "similar" to Gaussian. Equivalent to

$$\log p(x,y) = \beta_1(x) + \beta_2(y) + c\bar{\alpha}(x)\bar{\alpha}(y)$$

(ロ) (同) (E) (E) (E)

• Define (x, y) is uniformly dependent if $q \neq 0$ for any x, y

Basically, a stronger form of dependence. Not necessary (?)

Definition Convergence/identifiability theory Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

> Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with

- smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
- Sources s_i(t) are independent (over i) and stationary
- ▶ All $(s_i(t), s_i(t-1))$ non-quasi-Gaussian & uniformly dependent

Definition Convergence/identifiability theory Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

- > Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
 - Sources $s_i(t)$ are independent (over *i*) and stationary
 - ▶ All $(s_i(t), s_i(t-1))$ non-quasi-Gaussian & uniformly dependent
- Assume we apply permutation-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between real time windows and time-permuted
 - using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)

Definition Convergence/identifiability theory Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

> Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with

- smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
- Sources $s_i(t)$ are independent (over *i*) and stationary
- ▶ All $(s_i(t), s_i(t-1))$ non-quasi-Gaussian & uniformly dependent
- Assume we apply permutation-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between real time windows and time-permuted
 - using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
- Then, for all s_i(t) = k_i(h_j(x(t))) for some ordering of the j, and some scalar nonlinearities k_i : ℝ → ℝ.

・ロン ・回と ・ヨン ・ヨン

Definition Convergence/identifiability theory Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

> Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with

- smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
- Sources $s_i(t)$ are independent (over *i*) and stationary
- ▶ All $(s_i(t), s_i(t-1))$ non-quasi-Gaussian & uniformly dependent
- Assume we apply permutation-contrastive learning on x(t)
 - i.e. logistic regression to discriminate between real time windows and time-permuted
 - using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
- Then, for all s_i(t) = k_i(h_j(x(t))) for some ordering of the j, and some scalar nonlinearities k_i : ℝ → ℝ.
- I.e.: PCL demixes nonlinear ICA
- This is a constructive proof of identifiability of (second) model

・ロン ・回と ・ヨン ・ヨン

Definition Convergence/identifiability theory Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

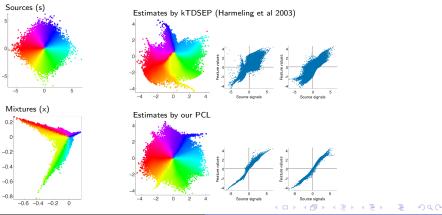
- > Assume data follows nonlinear ICA model $\mathbf{x}(t) = \mathbf{f}(\mathbf{s}(t))$ with
 - smooth, invertible nonlinear mixing $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$
 - Sources $s_i(t)$ are independent (over i) and stationary
 - ▶ All $(s_i(t), s_i(t-1))$ non-quasi-Gaussian & uniformly dependent
- Assume we apply permutation-contrastive learning on $\mathbf{x}(t)$
 - i.e. logistic regression to discriminate between real time windows and time-permuted
 - using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
- Then, for all s_i(t) = k_i(h_j(x(t))) for some ordering of the j, and some scalar nonlinearities k_i : ℝ → ℝ.
- I.e.: PCL demixes nonlinear ICA
- This is a constructive proof of identifiability of (second) model
- For quasi-Gaussian sources, demixes up to linear mixing

・ロト ・回ト ・ヨト ・ヨト

Definition Convergence/identifiability theory Simulations

Illustration of demixing capability

- AR Model with Laplacian innovations, n = 2log $p(s(t)|s(t-1)) = |s(t) - \rho s(t-1)|$
- Nonlinearity is MLP. Mixing: leaky ReLU's; Demixing: maxout



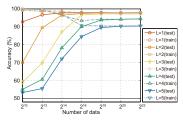
A. Hyvärinen and H. Morioka

Nonlinear ICA using temporal structure

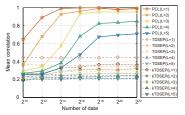
Definition Convergence/identifiability theory Simulations

Simulations

- AR Model with Laplacian innovations, n = 20
- ▶ Nonlinearity is MLP. Mixing: leaky ReLU's; Demixing: maxout



Classification accuracies. L: number of layers. Solid lines: test data. Dash-dotted line: training data. Chance level is 50%.



Rank correlation coefficients between sources and estimates. Solid lines: PCL. Dashed line: TDSEP. Dotted line: kTDSEP.

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them

<ロ> (日) (日) (日) (日) (日)

æ

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.

- 4 回 2 - 4 □ 2 - 4 □

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.
- Training uses ordinary deep learning algorithms and software

- 4 同 6 4 日 6 4 日 6

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.
- Training uses ordinary deep learning algorithms and software
- We proved that TCL and PCL solve nonlinear ICA
 - with general (smooth) nonlinear mixing function
 - nonstationary (TCL) or time-dependent (PCL) sources

イロン イヨン イヨン イヨン

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.
- Training uses ordinary deep learning algorithms and software
- We proved that TCL and PCL solve nonlinear ICA
 - with general (smooth) nonlinear mixing function
 - nonstationary (TCL) or time-dependent (PCL) sources
- First cases of identifiable nonlinear ICA

イロン イヨン イヨン イヨン

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.
- Training uses ordinary deep learning algorithms and software
- We proved that TCL and PCL solve nonlinear ICA
 - with general (smooth) nonlinear mixing function
 - nonstationary (TCL) or time-dependent (PCL) sources
- First cases of identifiable nonlinear ICA
- A new principled framework for unsupervised deep learning

Definition Convergence/identifiability theory Simulations

Conclusion

- Two new methods for unsupervised learning
 - In time-contrastive learning, divide time series into segments, learn to discriminate data points in them
 - In permutation-contrastive learning, discriminate between time windows of real data vs. of permuted (shuffled) data.
- Training uses ordinary deep learning algorithms and software
- We proved that TCL and PCL solve nonlinear ICA
 - with general (smooth) nonlinear mixing function
 - nonstationary (TCL) or time-dependent (PCL) sources
- First cases of identifiable nonlinear ICA
- A new principled framework for unsupervised deep learning
- Future work:
 - Application on image/video data
 - Combine the two methods