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Background: Towards principled unsupervised learning

I Unsupervised deep learning is a largely unsolved problem

I Important because often labelled data costly to obtain

I Probabilistic models with latent variables offer a powerful
principled approach
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Background: ICA as principled unsupervised learning

I Linear independent component analysis (ICA)

xi (t) =
n∑

j=1

aijsj(t) for all i , j = 1 . . . n (1)

I xi (t) is i-th observed signal in time point t
I aij constant parameters describing “mixing”
I Assuming independent, non-Gaussian “sources” sj

I ICA is identifiable, i.e. well-defined: (Darmois-Skitovich 1950; Comon, 1994)

I Observing only xi we can recover both aij and sj
I I.e. original sources can be recovered
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BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?
I Evaluate by e.g. Kullback-Leibler divergence

2) Sampling points from data distribution?
I Evaluate more or less visually, for images

3) Useful features for supervised learning?
I Evaluate e.g. by classification accuracy in benchmark data

4) Reveal underlying structure in data?
I Evaluation difficult, e.g. expert opinion

I These criteria are orthogonal, even contradictory!

I 1 & 2 essentially non-parametric problems, 3 & 4 parametric

I Goal in ICA (this talk) is 4)
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Applications of ICA: Brain source separation

(Hyvärinen, Ramkumar, Parkkonen, Hari, 2010)
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Applications of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997)

Features similar to wavelets, Gabor functions, simple cells.
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Extension: Topographic ICA

(Hyvärinen and Hoyer, 2001)

Topography similar to what is found in the cortex.
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Background: Nonlinear ICA is an unsolved problem

I Extend ICA to nonlinear case to get deep learning?
I Unfortunately, “basic” nonlinear ICA is not identifiable:
I If we define nonlinear ICA model simply as

xi (t) = fi (s1(t), . . . , sn(t)) for all i , j = 1 . . . n (2)

we cannot recover original sources (Darmois, 1952; Hyvärinen & Pajunen, 1999)

I For any x1, x2, we can always find g(x1, x2) independent of x1.
I Assuming we only consider marginal distribution over time

Sources (s)
Mixtures (x) Independent estimates
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Background: Temporal correlations help in ICA

I Harmeling et al (2003) suggested using temporal structure

x ⇒ s

I Related to finding “slow” features (Földiák, 1991; Wiskott and Sejnowski, 2002)

I Identifiability?
I Linear: Yes, if autocorrelations distinct for different sources

(Tong et al 1991; Belouchrani et al, 1997)

I Nonlinear: Unknown, although encouraging simulations
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Background: Temporal structure as nonstationarity

I An alternative principle for ICA:
Sources are nonstationary (Matsuoka et al, 2005)

x ⇒ s

I E.g. variances of the sources can be nonstationary

si (t) ∼ N (0, σ2
i (t)) (3)

I Many data sets have such nonstationarity
I Video, speech, EEG/MEG, financial time series

I Identifiability?
I Linear: Yes, no problem (Pham and Cardoso, 2001)

I Nonlinear: Unknown, almost never attempted
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Contributions in this talk

I We present two methods for nonlinear ICA

I Methods extend linear separation principles above
I Temporal dependencies
I Nonstationarity

I We use logistic regression in NN with artificially defined labels
I Turning unsupervised learning into supervised
I Cf. noise-contrastive learning, GAN

I Both methods proven to separate nonlinearly mixed sources

I We have constructive proofs of identifiability for nonlinear ICA
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Method I: Time-contrastive learning (NIPS2016)

Outline

I We learn features that enable discriminating data points from
different time segments

I We use ordinary neural network training:
Last hidden layer gives the features

I Surprising theoretical result:
Estimates a nonlinear ICA model

I with general nonlinear mixing x(t) = f(s(t)).
I nonstationary components si (t)
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I Observe n-dim time series x(t)
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I Number of classes is T ,
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I Multinomial logistic regression

1

n

Segments (1    T)
1 2 3 T 4 T-1 

1

m

Feature extractor:

1 1 2 2 3 T T3 4

Multinomial logistic regression:

A. Hyvärinen and H. Morioka Nonlinear ICA using temporal structure



Background
Time-contrastive learning

Permutation-contrastive learning

Definition
Convergence/identifiability theory
Experiments

Time-contrastive learning: Definition

I Observe n-dim time series x(t)

I Divide x(t) into T segments
(e.g. bins with equal sizes)

I Train MLP to tell which segment
a single data point comes from

I Number of classes is T ,
labels given by index of segment

I Multinomial logistic regression

I In hidden layer h, MLP should learn to
represent nonstationarity
(= differences between segments)
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Theorem: TCL estimates nonlinear nonstationary ICA

I Assume data follows nonlinear ICA model x(t) = f(s(t)) with
I smooth, invertible nonlinear mixing f : Rn → Rn

I independent sources si (t) with nonstationary variances

I Assume we apply time-contrastive learning on x(t)
I i.e. logistic regression to discriminate between time segments
I using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)

I Then, s(t)2 = Ah(x(t)) for some linear mixing matrix A.
(Squaring is element-wise)

I I.e.: TCL demixes nonlinear ICA model up to linear mixing
(which can be estimated by linear ICA) and up to squaring.

I This is a constructive proof of identifiability

I Generalizations: exponential families, dimension reduction
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Experiments with brain imaging data

I MEG data (like EEG but better)

I Sources estimated from resting data (no stimulation)
I a) Validation by classifying another data set with four

stimulation modalities: visual, auditory, tactile, rest.
I Trained a linear SVM on estimated sources
I Number of layers in MLP ranging from 1 to 4

I b) Attempt to visualize nonlinear processing

a)
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Figure 3: Real MEG data. a) Classification accuracies of linear SMVs newly trained with task-
session data to predict stimulation labels in task-sessions, with feature extractors trained in advance
with resting-session data. Error bars give standard errors of the mean across ten repetitions. For TCL
and DAE, accuracies are given for different numbers of layers L. Horizontal line shows the chance
level (25%). b) Example of spatial patterns of nonstationary components learned by TCL. Each
small panel corresponds to one spatial pattern with the measurement helmet seen from three different
angles (left, back, right); red/yellow is positive and blue is negative. “L3” shows approximate total
spatial pattern of one selected third-layer unit. “L2” shows the patterns of the three second-layer
units maximally contributing to this L3 unit. “L1” shows, for each L2 unit, the two most strongly
contributing first-layer units.

Results Figure 3a) shows the comparison of classification accuracies between the different methods,284

for different numbers of layers L = {1, 2, 3, 4}. The classification accuracies by the TCL method285

were consistently higher than those by the other (baseline) methods.1 We can also see a superior286

performance of multi-layer networks (L ≥ 3) compared with that of the linear case (L = 1), which287

indicates the importance of nonlinear demixing in the TCL method.288

Figure 3b) shows an example of spatial patterns learned by the TCL method. For simplicity of289

visualization, we plotted spatial patterns for the three-layer model. We manually picked one out of290

the ten hidden nodes from the third layer, and plotted its weighted-averaged sensor signals (Figure 3b,291

L3). We also visualized the most strongly contributing second- and first-layer nodes. We see292

progressive pooling of L1 units to form left temporal, right temporal, and occipito-parietal patterns293

in L2, which are then all pooled together in the L3 resulting in a bilateral temporal pattern with294

negative contribution from the occipito-parietal region. Most of the spatial patterns in the third layer295

(not shown) are actually similar to those previously reported using functional magnetic resonance296

imaging (fMRI), and MEG [2, 4]. Interestingly, none of the hidden units seems to represent artefacts,297

in contrast to ICA.298

8 Conclusion299

We proposed a new learning principle for unsupervised feature (representation) learning. It is based300

on analyzing nonstationarity in temporal data by discriminating between time segments. The ensuing301

“time-contrastive learning” is easy to implement since it only uses ordinary neural network training: a302

multi-layer perceptron with logistic regression. However, we showed that, surprisingly, it can estimate303

independent components in a nonlinear mixing model up to certain indeterminacies, assuming that304

the independent components are nonstationary in a suitable way. The indeterminacies include a linear305

mixing (which can be resolved by a further linear ICA step), and component-wise nonlinearities,306

such as squares or absolute values. TCL also avoids the computation of the gradient of the Jacobian,307

which is a major problem with maximum likelihood estimation [5].308

Our developments also give by far the strongest identifiability proof of nonlinear ICA in the literature.309

The indeterminacies actually reduce to just inevitable monotonic component-wise transformations in310

the case of modulated Gaussian sources. Thus, our results pave the way for further developments in311

nonlinear ICA, which has so far seriously suffered from the lack of almost any identifiability theory.312

Experiments on real MEG found neuroscientifically interesting networks. Other promising future313

application domains include video data, econometric data, and biomedical data such as EMG and314

ECG, in which nonstationary variances seem to play a major role.315

1Note that the classification using the final linear ICA is equivalent to using whitening since ICA only makes
a further orthogonal rotation, and could be replaced by whitening without affecting classification accuracy.
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Method II: Permutation-contrastive learning (AISTATS2017)

Outline

I We learn features that enable discriminating between short
time windows of real data vs. time-shuffled (permuted) data

I Again, ordinary NN training:
Last hidden layer gives the features

I Surprising (again!) theoretical result:
Estimates a nonlinear ICA model

I with general nonlinear mixing x(t) = f(s(t)).
I stationary components si (t) with temporal dependencies
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I Observe n-dim time series x(t)

I Take short time windows as new data

y(t) =
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I Create randomly time-permuted data

y∗(t) =
(
x(t), x(t∗)

)
with t∗ a random time point.
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I Observe n-dim time series x(t)

I Take short time windows as new data

y(t) =
(
x(t), x(t − 1)

)
I Create randomly time-permuted data

y∗(t) =
(
x(t), x(t∗)

)
with t∗ a random time point.

I Train MLP to discriminate y from y∗

I Ordinary nonlinear logistic regression
with two classes

I “Siamese” structure over time

1

n

1

Logistic regression

Permuted dataReal data

Feature extractor:

n

Real data     vs. permuted
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Definitions for convergence theory

I Denote x = si (t) and y = si (t − 1), and

qx ,y (x , y) :=
∂2 log px ,y (x , y)

∂x∂y

I Define (x , y) is quasi-Gaussian if

qx ,y (x , y) = c α(x)α(y)

I Intuitively, dependency is “similar” to Gaussian. Equivalent to

log p(x , y) = β1(x) + β2(y) + cᾱ(x)ᾱ(y)

I Define (x , y) is uniformly dependent if q 6= 0 for any x , y
I Basically, a stronger form of dependence. Not necessary (?)

A. Hyvärinen and H. Morioka Nonlinear ICA using temporal structure



Background
Time-contrastive learning

Permutation-contrastive learning

Definition
Convergence/identifiability theory
Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

I Assume data follows nonlinear ICA model x(t) = f(s(t)) with
I smooth, invertible nonlinear mixing f : Rn → Rn

I Sources si (t) are independent (over i) and stationary
I All (si (t), si (t − 1)) non-quasi-Gaussian & uniformly dependent

I Assume we apply permutation-contrastive learning on x(t)
I i.e. logistic regression to discriminate between

real time windows and time-permuted
I using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)

I Then, for all si (t) = ki (hj(x(t))) for some ordering of the j ,
and some scalar nonlinearities ki : R→ R.

I I.e.: PCL demixes nonlinear ICA

I This is a constructive proof of identifiability of (second) model

I For quasi-Gaussian sources, demixes up to linear mixing
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Illustration of demixing capability

I AR Model with Laplacian innovations, n = 2
log p(s(t)|s(t − 1)) = |s(t)− ρs(t − 1)|

I Nonlinearity is MLP. Mixing: leaky ReLU’s; Demixing: maxout
Sources (s)

Mixtures (x)

Estimates by kTDSEP (Harmeling et al 2003)

Estimates by our PCL
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Simulations

I AR Model with Laplacian innovations, n = 20

I Nonlinearity is MLP. Mixing: leaky ReLU’s; Demixing: maxout
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Conclusion

I Two new methods for unsupervised learning
I In time-contrastive learning, divide time series into segments,

learn to discriminate data points in them

I In permutation-contrastive learning, discriminate between time
windows of real data vs. of permuted (shuffled) data.

I Training uses ordinary deep learning algorithms and software
I We proved that TCL and PCL solve nonlinear ICA

I with general (smooth) nonlinear mixing function
I nonstationary (TCL) or time-dependent (PCL) sources

I First cases of identifiable nonlinear ICA

I A new principled framework for unsupervised deep learning
I Future work:

I Application on image/video data
I Combine the two methods
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