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Abstract

» How to extract nonlinear features from multi-dimensional data
when there are no labels (unsupervised)?

v

We use temporal structure in time series
> in two different ways, two different methods

v

First cases of provably identifiable (well-defined)
nonlinear ICA.

» A new principled framework for unsupervised deep learning
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Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

Background: Towards principled unsupervised learning

> Unsupervised deep learning is a largely unsolved problem
» Important because often labelled data costly to obtain

» Probabilistic models with latent variables offer a powerful
principled approach
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Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

Background: ICA as principled unsupervised learning

» Linear independent component analysis (ICA)

x,-(t):Za,'jsj(t) foralli,j=1...n (1)
j=1

» x;(t) is i-th observed signal in time point ¢
> aj constant parameters describing “mixing”
» Assuming independent, non-Gaussian “sources” s;
» ICA is identifiable, i.e. well-defined: (parmois-Skitovich 1950; Comon, 1994)

» Observing only x; we can recover both aj; and s;
> |l.e. original sources can be recovered
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» Evaluate by e.g. Kullback-Leibler divergence

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?

» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?

» Evaluate more or less visually, for images

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?
» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?
» Evaluate more or less visually, for images
3) Useful features for supervised learning?
» Evaluate e.g. by classification accuracy in benchmark data

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?
» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?
» Evaluate more or less visually, for images
3) Useful features for supervised learning?
» Evaluate e.g. by classification accuracy in benchmark data
4) Reveal underlying structure in data?
» Evaluation difficult, e.g. expert opinion

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?
» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?
» Evaluate more or less visually, for images
3) Useful features for supervised learning?
» Evaluate e.g. by classification accuracy in benchmark data
4) Reveal underlying structure in data?

» Evaluation difficult, e.g. expert opinion

» These criteria are orthogonal, even contradictory!

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?

» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?

» Evaluate more or less visually, for images

3) Useful features for supervised learning?
» Evaluate e.g. by classification accuracy in benchmark data

4) Reveal underlying structure in data?
» Evaluation difficult, e.g. expert opinion

» These criteria are orthogonal, even contradictory!

> 1 & 2 essentially non-parametric problems, 3 & 4 parametric

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Background ICA as principled unsupervised learning
Difficulty of nonlinear ICA
Nonlinear ICA and time structure

BTW, what is the goal in unsupervised learning?

1) Accurate model of data distribution?
» Evaluate by e.g. Kullback-Leibler divergence
2) Sampling points from data distribution?
» Evaluate more or less visually, for images
3) Useful features for supervised learning?
» Evaluate e.g. by classification accuracy in benchmark data
4) Reveal underlying structure in data?
» Evaluation difficult, e.g. expert opinion
» These criteria are orthogonal, even contradictory!
> 1 & 2 essentially non-parametric problems, 3 & 4 parametric

» Goal in ICA (this talk) is 4)
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Applications of ICA: Brain source separation

Temporal envelope (arbitrary units) Fourier amplitude (arbitrary units) Distribution over channels  Phase differences
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(Hyvérinen, Ramkumar, Parkkonen, Hari, 2010)
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Background ICA as principled unsupervised learning

Applications of ICA: Image features

(Olshausen and Field, 1996; Bell and Sejnowski, 1997
# 1 <k I - |

Features similar to wavelets, Gabor functions, simple cells.
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Background ICA as principled unsupervised learning

Extension: Topographic ICA

(Hyvarinen and Hoyer, 2001)

i

-

Topography similar to what is found in the cortex.
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Background: Nonlinear ICA is an unsolved problem

» Extend ICA to nonlinear case to get deep learning?
» Unfortunately, “basic” nonlinear ICA is not identifiable:
> If we define nonlinear ICA model simply as

xi(t) = fi(s1(t),...,sn(t)) foralli,j=1...n (2)

we cannot recover Or|g|na| SOUICES (Darmois, 1952; Hyvirinen & Pajunen, 1999)
» For any xi, x2, we can always find g(xi, x2) independent of x;.
» Assuming we only consider marginal distribution over time
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Background: Temporal correlations help in ICA

» Harmeling et al (2003) suggested using temporal structure
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> Related to finding “slow” features (reidisk, 1991; Wiskott and Sejnowski, 2002)
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Background: Temporal correlations help in ICA

» Harmeling et al (2003) suggested using temporal structure

r——
x iR =
> Related to finding “slow” features (reidisk, 1991; Wiskott and Sejnowski, 2002)

> ldentifiability?
» Linear: Yes, if autocorrelations distinct for different sources
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(Tong et al 1991; Belouchrani et al, 1997)
> Nonlinear: Unknown, although encouraging simulations
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Background: Temporal structure as nonstationarity

» An alternative principle for ICA:
Sources are nonstationary (Matsuoka et al, 2005)

il S
W’WWWM = FMM
et iy

» E.g. variances of the sources can be nonstationary

si(t) ~ N(0,07(1)) (3)

» Many data sets have such nonstationarity
» Video, speech, EEG/MEG, financial time series
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Background: Temporal structure as nonstationarity

» An alternative principle for ICA:
Sources are nonstationary (Matsuoka et al, 2005)

il S
W’WWWM = FMM
et iy

» E.g. variances of the sources can be nonstationary

si(t) ~ N(0,07(1)) (3)

» Many data sets have such nonstationarity

» Video, speech, EEG/MEG, financial time series
> ldentifiability?

» Linear: YeS, no problem (Pham and Cardoso, 2001)

» Nonlinear: Unknown, almost never attempted
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Contributions in this talk

>

We present two methods for nonlinear ICA

v

Methods extend linear separation principles above

» Temporal dependencies
» Nonstationarity

v

We use logistic regression in NN with artificially defined labels

» Turning unsupervised learning into supervised
» Cf. noise-contrastive learning, GAN

v

Both methods proven to separate nonlinearly mixed sources

v

We have constructive proofs of identifiability for nonlinear ICA
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Time-contrastive learning Convergence/identifiability theory
Experiments

Method I: Time-contrastive learning (NIPS2016)

Outline

» We learn features that enable discriminating data points from
different time segments
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Definition
Time-contrastive learning Convergence/identifiability theory
Experiments

Method I: Time-contrastive learning (NIPS2016)

Outline

» We learn features that enable discriminating data points from
different time segments

» We use ordinary neural network training:
Last hidden layer gives the features
» Surprising theoretical result:
Estimates a nonlinear ICA model
» with general nonlinear mixing x(t) = f(s(t)).
» nonstationary components s;(t)
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Definition
Time-contrastive learning Convergence/identifiability theory
Experiments

Time-contrastive learning: Definition

» Observe n-dim time series x(t)

e s e I

Time (t)
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» Observe n-dim time series x(t) T
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Definition
Time-contrastive learning Convergence/identifiability theory
Experiments

Time-contrastive learning: Definition

Segments (1...7)
3 4 T1, T

ot
rorhinl

» Observe n-dim time series x(t)

» Divide x(t) into T segments
(e.g. bins with equal sizes)

T

» Train MLP to tell which segment " WW sl
a single data point comes from | P—— e;tr:clor_ hoo?)
» Number of classes is T, =
labels given by index of segment 1 Lkl M
» Multinomial logistic regression
Aok
o

Multlnomlal logistic regression: W, b

H_vw i
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Definition
Time-contrastive learning Convergence/identifiability theory
Experiments

Time-contrastive learning: Definition

Segments (1...7)
3 4 T1, T

» Observe n-dim time series x(t) ‘
» Divide x(t) into T segments A
(e.g. bins with equal sizes) i
» Train MLP to tell which segment " WW W
a single data point comes from | P—— e;tralclor' o0
» Number of classes is T, '
labels given by index of segment 1 Lkl M
» Multinomial logistic regression
. Aok
> In hidden layer h, MLP should learn to !
represent nonstationarity m I 1 =T
(: differences between segments) Multlnomlal logistic regression: W, b I

T ,v LR
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Time-contrastive learning Convergence/identifiability theory
Experiments

Theorem: TCL estimates nonlinear nonstationary |CA

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R" — R”
» independent sources s;(t) with nonstationary variances
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Theorem: TCL estimates nonlinear nonstationary |CA

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with
» smooth, invertible nonlinear mixing f : R" — R”
» independent sources s;(t) with nonstationary variances

» Assume we apply time-contrastive learning on x(t)

> i.e. logistic regression to discriminate between time segments
» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
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Definition
Time-contrastive learning Convergence/identifiability theory
Experiments

Theorem: TCL estimates nonlinear nonstationary |CA

>

Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R" — R”
» independent sources s;(t) with nonstationary variances

v

Assume we apply time-contrastive learning on x(t)
> i.e. logistic regression to discriminate between time segments
» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
Then, s(t)? = Ah(x(t)) for some linear mixing matrix A.
(Squaring is element-wise)

v

v

l.e.: TCL demixes nonlinear ICA model up to linear mixing
(which can be estimated by linear ICA) and up to squaring.

v

This is a constructive proof of identifiability
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Experiments

Theorem: TCL estimates nonlinear nonstationary |CA

>

Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R" — R”
» independent sources s;(t) with nonstationary variances

v

Assume we apply time-contrastive learning on x(t)
> i.e. logistic regression to discriminate between time segments
» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
Then, s(t)? = Ah(x(t)) for some linear mixing matrix A.
(Squaring is element-wise)

v

v

l.e.: TCL demixes nonlinear ICA model up to linear mixing
(which can be estimated by linear ICA) and up to squaring.

v

This is a constructive proof of identifiability

v

Generalizations: exponential families, dimension reduction
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Definition
Convergence/identifiability theory
Experiments

Time-contrastive learning

Experiments with brain imaging data

» MEG data (like EEG but better)

» Sources estimated from resting data (no stimulation)
» a) Validation by classifying another data set with four

stimulation modalities: visual, auditory, tactile, rest.
» Trained a linear SVM on estimated sources
» Number of layers in MLP ranging from 1 to 4

b) Attempt to visualize nonlinear processing

o
S

To e
L2 VgC TVIF VWOrF

L, WMeT WS WS
TCL DAE  kTDSEP NSVICA ‘.’ ‘.‘ ‘0’

A. Hyvérinen and H. Morioka

Classification accuracy (%)
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Method Il: Permutation-contrastive learning (AISTATS2017)

Outline

» We learn features that enable discriminating between short
time windows of real data vs. time-shuffled (permuted) data
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Method Il: Permutation-contrastive learning (AISTATS2017)

Outline
» We learn features that enable discriminating between short
time windows of real data vs. time-shuffled (permuted) data
» Again, ordinary NN training:
Last hidden layer gives the features
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Method Il: Permutation-contrastive learning (AISTATS2017)

Outline

» We learn features that enable discriminating between short
time windows of real data vs. time-shuffled (permuted) data
» Again, ordinary NN training:
Last hidden layer gives the features
» Surprising (again!) theoretical result:
Estimates a nonlinear ICA model
» with general nonlinear mixing x(t) = f(s(t)).
» stationary components s;(t) with temporal dependencies
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Permutation-contrastive learning: Definition

» Observe n-dim time series x(t) 1

A. Hyvérinen and H. Morioka Nonlinear ICA using temporal structure



Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Permutation-contrastive learning: Definition

» Observe n-dim time series x(t) 1

» Take short time windows as new data m

y(t) = (x(t),x(t - 1)) n Vil
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Permutation-contrastive learning: Definition

Real data Permuted data
» Observe n-dim time series x(t) 1 AN Aloby
» Take short time windows as new data WL ¥ o
() v (t)
y(t) = (x(t),x(t — 1)) n Ml oo

» Create randomly time-permuted data

y (1) = (x(t),x(t"))

with t* a random time point.
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Permutation-contrastive learning Simulations

Permutation-contrastive learning: Definition

Real data Permuted data
» Observe n-dim time series x(t) 1 AN A
> Take short time windows as new data WL " T
y(t), v (1)
y(t) = (x(t), x(t — 1)) n A i
—q g T
» Create randomly time-permuted data I :?tf”e extractor h(f@: l
y (t) = (x(t),x(t")) A Wi
with t* a random time point. h(y(t)) : h(y*(t)
» Train MLP to discriminate y from y* " V:\’V W}M
» Ordinary nonlinear logistic regression I Logistic regression l
with two classes **

Real data y vs. permuted y

» “Siamese” structure over time
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Definitions for convergence theory

» Denote x = si(t) and y = s;(t — 1), and

9 log puy (X, y
Gy (X, y) = 8Xé§,( )

» Define (x,y) is quasi-Gaussian if
Gxy(X,y) = ca(x)aly)

> Intuitively, dependency is “similar” to Gaussian. Equivalent to

log p(x,y) = Bi(x) + Ba(y) + ca(x)a(y)

» Define (x, y) is uniformly dependent if g # 0 for any x,y
» Basically, a stronger form of dependence. Not necessary (7)
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with
» smooth, invertible nonlinear mixing f : R” — R"
» Sources s;(t) are independent (over /) and stationary
» All (si(t),si(t — 1)) non-quasi-Gaussian & uniformly dependent
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Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with
» smooth, invertible nonlinear mixing f : R” — R"
» Sources s;(t) are independent (over /) and stationary
» All (si(t),si(t — 1)) non-quasi-Gaussian & uniformly dependent
» Assume we apply permutation-contrastive learning on x(t)
> i.e. logistic regression to discriminate between

real time windows and time-permuted
» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
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Permutation-contrastive learning Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with

» smooth, invertible nonlinear mixing f : R” — R"

» Sources s;(t) are independent (over /) and stationary

» All (si(t),si(t — 1)) non-quasi-Gaussian & uniformly dependent
» Assume we apply permutation-contrastive learning on x(t)

> i.e. logistic regression to discriminate between

real time windows and time-permuted

» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)

> Then, for all s;(t) = ki(hj(x(t))) for some ordering of the j,
and some scalar nonlinearities k; : R — R.
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Theorem: PCL estimates nonlinear ICA with time dependencies

» Assume data follows nonlinear ICA model x(t) = f(s(t)) with
» smooth, invertible nonlinear mixing f : R” — R"
» Sources s;(t) are independent (over /) and stationary
» All (si(t),si(t — 1)) non-quasi-Gaussian & uniformly dependent

» Assume we apply permutation-contrastive learning on x(t)

> i.e. logistic regression to discriminate between

real time windows and time-permuted

» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)

> Then, for all s;(t) = ki(hj(x(t))) for some ordering of the j,
and some scalar nonlinearities k; : R — R.

> l.e.: PCL demixes nonlinear ICA
» This is a constructive proof of identifiability of (second) model
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Theorem: PCL estimates nonlinear ICA with time dependencies

>

Assume data follows nonlinear ICA model x(t) = f(s(t)) with
» smooth, invertible nonlinear mixing f : R” — R"
» Sources s;(t) are independent (over /) and stationary
» All (si(t),si(t — 1)) non-quasi-Gaussian & uniformly dependent

v

Assume we apply permutation-contrastive learning on x(t)
> i.e. logistic regression to discriminate between
real time windows and time-permuted
» using MLP with hidden layer in h(x(t)) with dim(h) = dim(x)
Then, for all s;(t) = ki(hj(x(t))) for some ordering of the j,
and some scalar nonlinearities k; : R — R.

v

v

l.e.: PCL demixes nonlinear ICA

v

This is a constructive proof of identifiability of (second) model

v

For quasi-Gaussian sources, demixes up to linear mixing
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Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

lllustration of demixing capability

» AR Model with Laplacian innovations, n = 2
log p(s(t)|s(t — 1)) = |s(t) — ps(t — 1)|
> Nonlinearity is MLP. Mixing: leaky ReLU’s; Demixing: maxout

Sources (5) Estimates by kTDSEP (Harmeling et al 2003)
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Simulations

» AR Model with Laplacian innovations, n = 20

» Nonlinearity is MLP. Mixing:

—e— L=1test)
L=1(train)
L=2(test)
L=2(train)|
L=3(test)
L=3(train)

—A L=4(test)

A L=4(train)

—9— L=5(test)

- L=5(train)

Accuracy (%)

21 2 21 21 21 o 22
Number of data

Classification accuracies.

L: number of layers.

Solid lines: test data.
Dash-dotted line: training data.
Chance level is 50%.
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leaky RelLU's; Demixing: maxout
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Rank correlation coefficients
between sources and estimates.
Solid lines: PCL.

Dashed line: TDSEP.

Dotted line: kTDSEP.
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Conclusion

» Two new methods for unsupervised learning

» In time-contrastive learning, divide time series into segments,
learn to discriminate data points in them
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learn to discriminate data points in them
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v

Training uses ordinary deep learning algorithms and software
We proved that TCL and PCL solve nonlinear ICA

» with general (smooth) nonlinear mixing function
» nonstationary (TCL) or time-dependent (PCL) sources

v

First cases of identifiable nonlinear ICA
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» A new principled framework for unsupervised deep learning

A. Hyvarinen and H. Morioka Nonlinear ICA using temporal structure



Definition
Convergence/identifiability theory
Permutation-contrastive learning Simulations

Conclusion

» Two new methods for unsupervised learning
» In time-contrastive learning, divide time series into segments,
learn to discriminate data points in them
» In permutation-contrastive learning, discriminate between time
windows of real data vs. of permuted (shuffled) data.

v

Training uses ordinary deep learning algorithms and software
We proved that TCL and PCL solve nonlinear ICA

» with general (smooth) nonlinear mixing function
» nonstationary (TCL) or time-dependent (PCL) sources

v

v

First cases of identifiable nonlinear ICA

v

A new principled framework for unsupervised deep learning
Future work:

v

» Application on image/video data
» Combine the two methods
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