Learning features to compare distributions

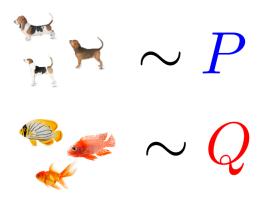
Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Workshop on AI and Neuroscience

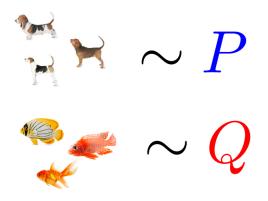
Goal of this talk

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: Learn distinguishing features that indicate how P and Q differ.



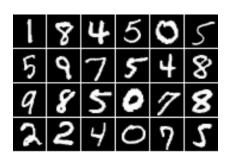
Goal of this talk

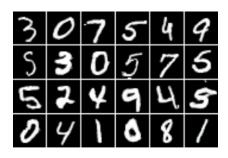
- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: Learn distinguishing features that indicate how P and Q differ.



Goal of this talk

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: Learn distinguishing features that indicate how P and Q differ.

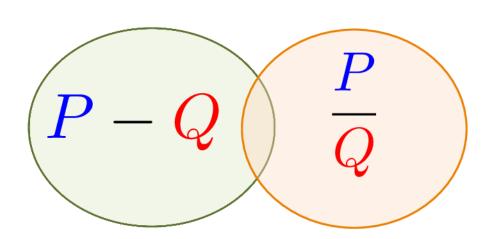


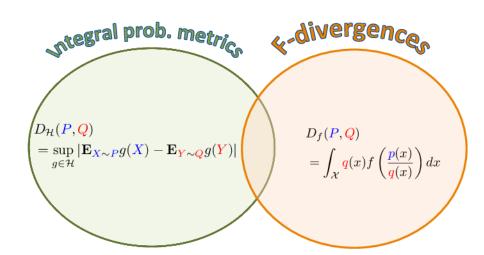


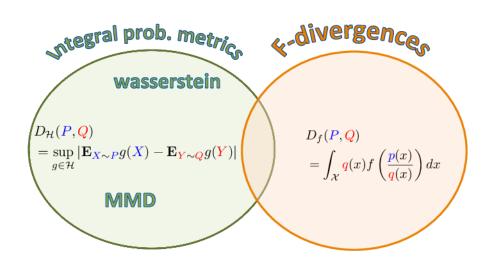
MNIST samples

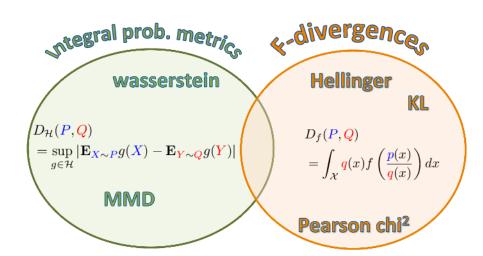
Samples from a GAN

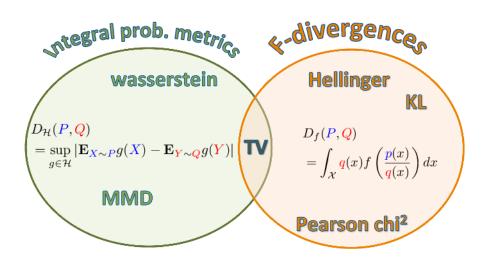
Significant difference in GAN and MNIST? 3/36











Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

Overview

The maximum mean discrepancy:

- How to compute and interpret the MMD
- "Training" the MMD to maximize test power
- Application to troubleshooting GANs

The maximum Stein discrepancy:

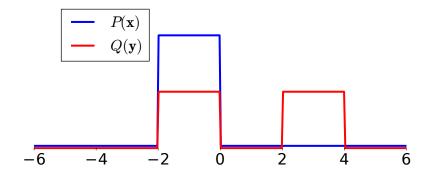
- Divergence between sample and model
- Only need model up to normalizing constant

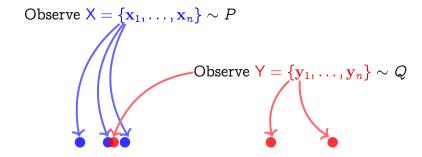
The ME test statistic:

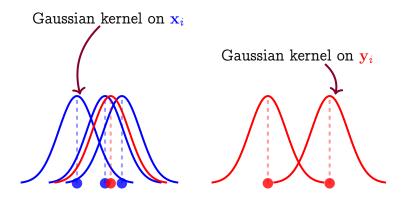
- Informative, linear time features for comparing distributions
- How to learn these features

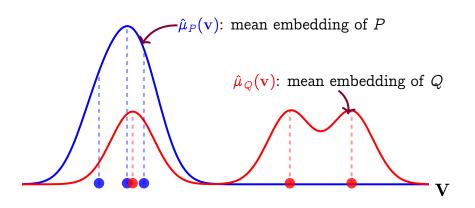
The maximum mean discrepancy

Are P and Q different?

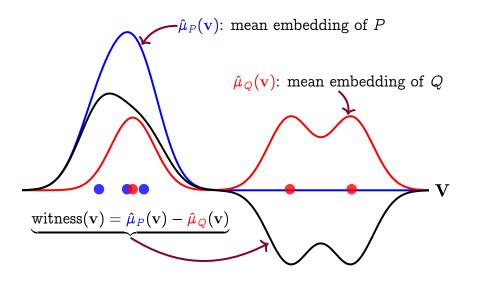


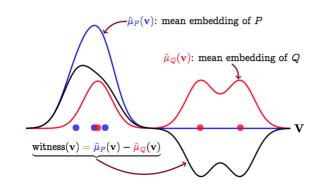






$$\hat{m{\mu}}_P(\mathbf{v}) := rac{1}{m} \sum_{i=1}^m k(\pmb{x}_i, \pmb{v})$$

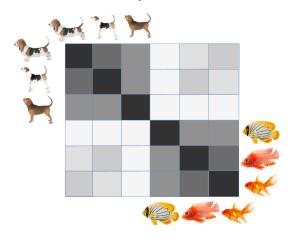




$$egin{aligned} \widehat{MMD}^2 &= \left\| ext{witness}(\mathbf{v})
ight\|_{\mathcal{F}}^2 \ &= rac{1}{n(n-1)} \sum_{i
eq j} k(x_i, x_j) + rac{1}{n(n-1)} \sum_{i
eq j} k(\mathbf{y}_i, \mathbf{y}_j) \ &- rac{2}{n^2} \sum_{i
eq j} k(x_i, \mathbf{y}_j) \end{aligned}$$

Overview

- Dogs (= P) and fish (= Q) example revisited
- Each entry is one of $k(dog_i, dog_j)$, $k(dog_i, fish_j)$, or $k(fish_i, fish_j)$



Overview

The maximum mean discrepancy:

$$\widehat{MMD}^2 = \frac{1}{n(n-1)} \sum_{i \neq j} k(\deg_i, \deg_j) + \frac{1}{n(n-1)} \sum_{i \neq j} k(\operatorname{fish}_i, \operatorname{fish}_j) \\ - \frac{2}{n^2} \sum_{i \neq j} k(\deg_i, \operatorname{fish}_j) \\ k(\operatorname{dog}_i, \operatorname{dog}_j) \quad k(\operatorname{dog}_i, \operatorname{fish}_j)$$

Asymptotics of MMD

■ The MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x}_i, \pmb{x}_j) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & -rac{2}{n^2} \sum_{i,j} k(\pmb{x}_i, \pmb{ extbf{y}}_j) \end{aligned}$$

but how to choose the kernel?

Asymptotics of MMD

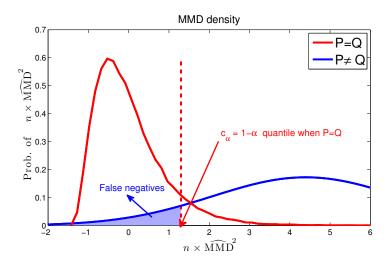
■ The MMD:

$$egin{aligned} \widehat{MMD}^2 = & rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{x}_i, \pmb{x}_j) + rac{1}{n(n-1)} \sum_{i
eq j} k(\pmb{ extbf{y}}_i, \pmb{ extbf{y}}_j) \ & - rac{2}{n^2} \sum_{i,j} k(\pmb{x}_i, \pmb{ extbf{y}}_j) \end{aligned}$$

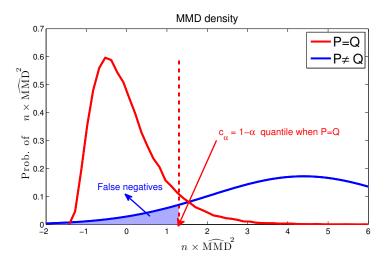
but how to choose the kernel?

- Perspective from statistical hypothesis testing:
 - When P = Q then \widehat{MMD}^2 "close to zero".
 - When $P \neq Q$ then \widehat{MMD}^2 "far from zero"
- Threshold c_{α} for \widehat{MMD}^2 gives false positive rate α

A statistical test

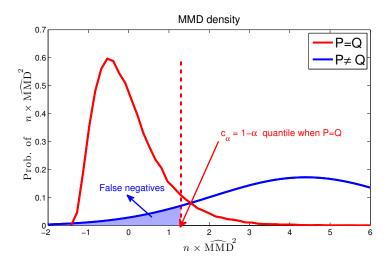


A statistical test



Best kernel gives lowest false negative rate (=highest power)

A statistical test



Best kernel gives lowest false negative rate (=highest power)

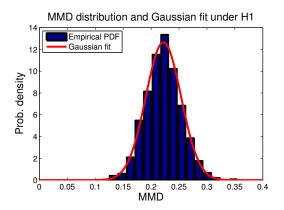
.... but can you train for this?

Asymptotics of MMD

■ When $P \neq Q$, statistic is asymptotically normal,

$$rac{\widehat{ ext{MMD}}^2 - ext{MMD}(P,Q)}{\sqrt{V_n(P,Q)}} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,1),$$

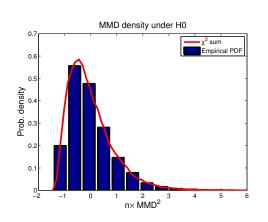
where $\mathrm{MMD}(P,\,Q)$ is population MMD, and $\,V_n(P,\,Q)=O\left(n^{-1}
ight)$.



Asymptotics of MMD

Where P = Q, statistic has asymptotic distribution

$$n\widehat{ ext{MMD}}^2 \sim \sum_{l=1}^\infty \lambda_l \left[z_l^2 - 2
ight]$$



where

$$\lambda_i \psi_i(x') = \int_{\mathcal{X}} \underbrace{ ilde{k}(x,x')}_{ ext{centred}} \psi_i(x) dP(x)$$

$$z_l \sim \mathcal{N}(0,2)$$
 i.i.d.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(\widehat{n ext{MMD}}^2>\hat{c}_lpha
ight)$$

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$egin{split} & \Pr_1\left(n\widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi\left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}
ight) \end{split}$$

where

- \blacksquare Φ is the CDF of the standard normal distribution.
- \bullet \hat{c}_{α} is an estimate of c_{α} test threshold.

The power of our test (Pr₁ denotes probability under $P \neq Q$):

$$ext{Pr}_1\left(n\widehat{ ext{MMD}}^2>\hat{c}_{lpha}
ight) \ o \Phi\left(\underbrace{rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}}_{\mathcal{O}(n^{-1/2})}-\underbrace{rac{c_{lpha}}{n\sqrt{V_n(P,Q)}}}_{\mathcal{O}(n^{-3/2})}
ight)$$

Second term asymptotically negligible!

The power of our test (Pr₁ denotes probability under $P \neq Q$):

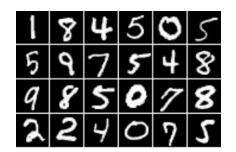
$$egin{split} & ext{Pr}_1 \left(n \widehat{ ext{MMD}}^2 > \hat{c}_{lpha}
ight) \ & o \Phi \left(rac{ ext{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}} - rac{c_{lpha}}{n \sqrt{V_n(P,Q)}}
ight) \end{split}$$

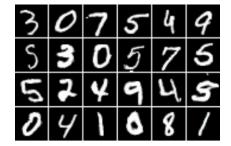
To maximize test power, maximize

$$\frac{\text{MMD}^2(P,Q)}{\sqrt{V_n(P,Q)}}$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., in review for ICLR 2017) Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

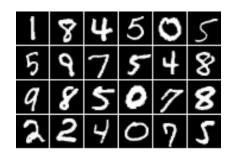




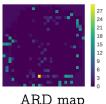
MNIST samples

Samples from a GAN

Troubleshooting for generative adversarial networks



MNIST samples

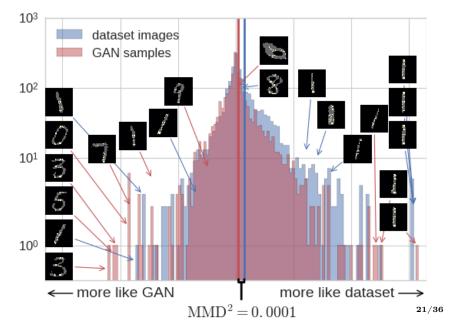


ARD map

Samples from a GAN

- Power for optimzed ARD **kernel**: 1.00 at $\alpha = 0.01$
- Power for optimized RBF kernel: 0.57 at $\alpha = 0.01$

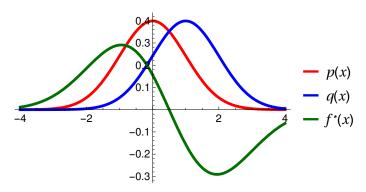
Benchmarking generative adversarial networks



Testing against a probabilistic model

Statistical model criticism

$$MMD(rac{P}{P}, rac{Q}{Q}) = \|f^*\|^2 = \sup_{\|f\|_{\mathcal{F}} \leq 1} [E_Q f - E_{rac{p}{P}} f]$$



 $f^*(x)$ is the witness function

Can we compute MMD with samples from Q and a model P? Problem: usually can't compute $E_p f$ in closed form.

Stein idea

To get rid of $E_{p}f$ in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [E_q f - E_{\textcolor{red}{p}} f]$$

we define the Stein operator

$$T_{p}f = \partial_{x}f + f\left(\partial_{x}\log p\right)$$

Then

$$E_{P}T_{P}f=0$$

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)

Stein operator

$$T_{m p}f = \partial_x f + f \partial_x (\log m p)$$

$$MSD(\mathbf{p}, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \le 1} E_q T_{\mathbf{p}} g - E_{\mathbf{p}} T_{\mathbf{p}} g$$

Stein operator

$$T_{m p}f = \partial_x f + f \partial_x (\log {m p})$$

$$MSD(\mathbf{p}, q, \mathcal{F}) = \sup_{\|g\|_{\mathcal{F}} \le 1} E_q T_{\mathbf{p}} g - E_{\mathbf{p}} T_{\mathbf{p}} g$$

Stein operator

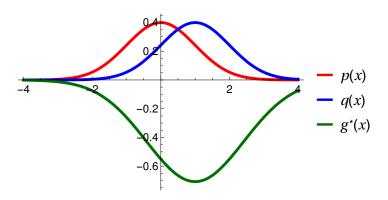
$$T_{m p}f = \partial_x f + f \partial_x (\log {m p})$$

$$MSD({\color{red} p},{\color{gray} q},{\color{gray} {\mathcal F}}) = \sup_{\|{\color{gray} g}\|_{{\color{gray} {\mathcal F}}} \leq 1} E_{{\color{gray} q}} T_{{\color{gray} p}} {\color{gray} g} - {\color{gray} {\it E}}_{{\color{gray} p}} T_{{\color{gray} p}} {\color{gray} g} = \sup_{\|{\color{gray} g}\|_{{\color{gray} {\mathcal F}}} \leq 1} E_{{\color{gray} q}} T_{{\color{gray} p}} {\color{gray} g}$$

Stein operator

$$T_{{m p}}f=\partial_x f+f\partial_x(\log {m p})$$

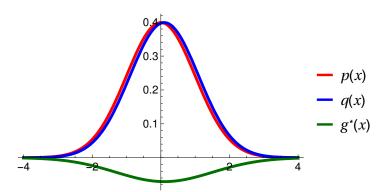
$$MSD({\color{red}p},{\color{gray}q},{\color{gray}\mathcal{F}}) = \sup_{\|{\color{gray}g}\|_{{\color{gray}p}} \leq 1} E_{{\color{gray}q}} T_{{\color{gray}p}} {\color{gray}g} - E_{{\color{gray}p}} T_{{\color{gray}p}} {\color{gray}g} = \sup_{\|{\color{gray}g}\|_{{\color{gray}p}} \leq 1} E_{{\color{gray}q}} T_{{\color{gray}p}} {\color{gray}g}$$



Stein operator

$$T_{{m p}}f=\partial_x f+f\partial_x(\log {m p})$$

$$MSD({\color{red}p},{\color{gray}q},{\color{gray}\mathcal{F}}) = \sup_{\|{\color{gray}g}\|_{{\color{gray}p}} \leq 1} E_{{\color{gray}q}} T_{{\color{gray}p}} {\color{gray}g} - E_{{\color{gray}p}} T_{{\color{gray}p}} {\color{gray}g} = \sup_{\|{\color{gray}g}\|_{{\color{gray}p}} \leq 1} E_{{\color{gray}q}} T_{{\color{gray}p}} {\color{gray}g}$$



Closed-form expression for MSD: given $Z, Z' \sim q$, then (Chwialkowski, Strathmann, G., 2016) (Liu, Lee, Jordan 2016)

$$\mathrm{MSD}(extbf{\emph{p}},\,q,\mathcal{F}) = E_q h_{ extbf{\emph{p}}}(Z,Z')$$

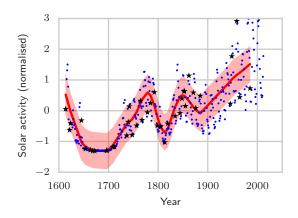
where

$$egin{aligned} h_{m p}(x,y) &:= \partial_x \log m p(x) \partial_x \log m p(y) k(x,y) \ &+ \partial_y \log m p(y) \partial_x k(x,y) \ &+ \partial_x \log m p(x) \partial_y k(x,y) \ &+ \partial_x \partial_y k(x,y) \end{aligned}$$

and k is RKHS kernel for \mathcal{F}

Only depends on kernel and $\partial_x \log p(x)$. Do not need to normalize p, or sample from it.

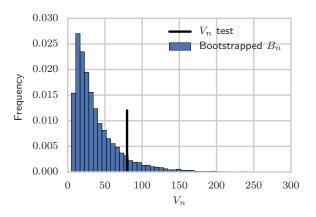
Statistical model criticism



Test the hypothesis that a Gaussian process model, learned from data *, is a good fit for the test data (example from Lloyd and Ghahramani, 2015)

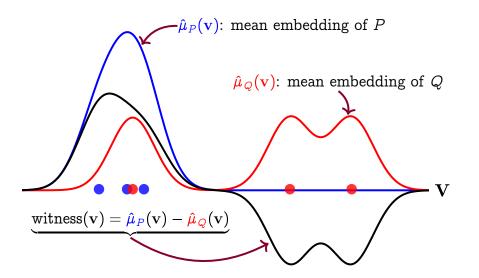
Code: https://github.com/karlnapf/kernel_goodness_of_fit

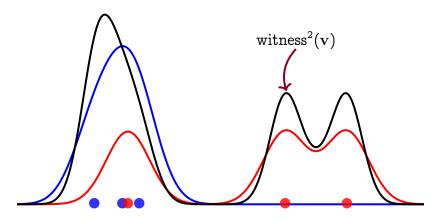
Statistical model criticism



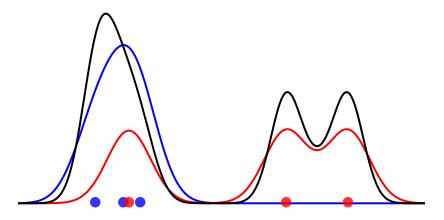
Test the hypothesis that a Gaussian process model, learned from data *, is a good fit for the test data

The ME statistic and test

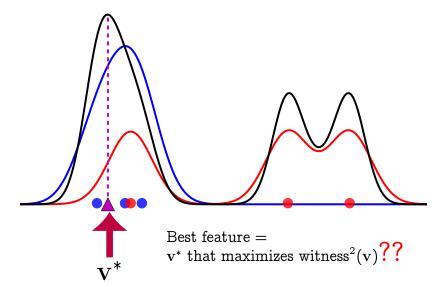


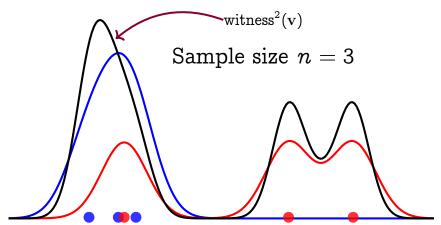


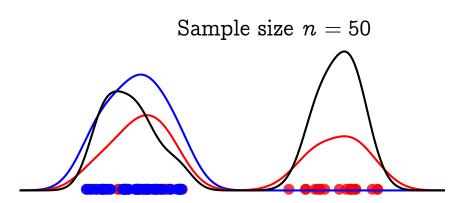
Take square of witness (only worry about amplitude)

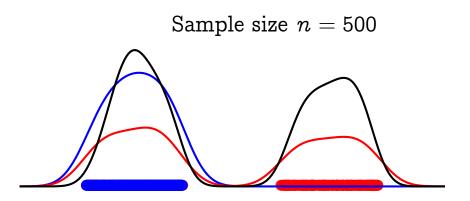


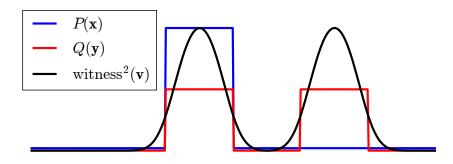
- New test statistic: witness² at a single \mathbf{v}^* ;
- Linear time in number n of samples
-but how to choose best feature v*?



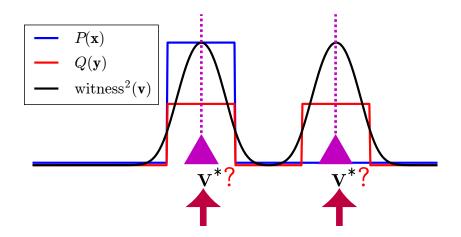








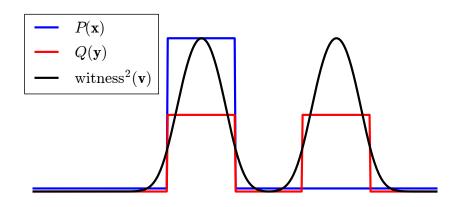
Population witness² function



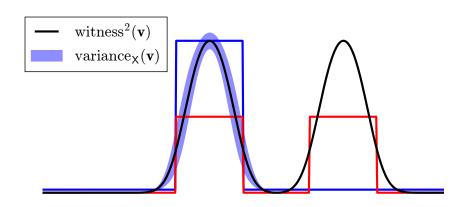
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.

- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.

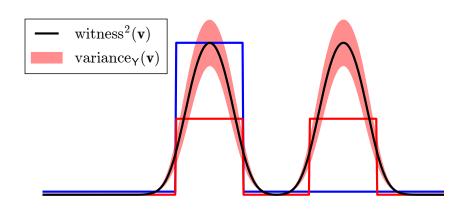
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.



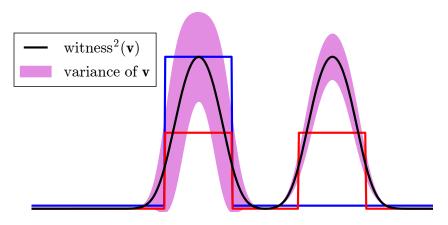
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.



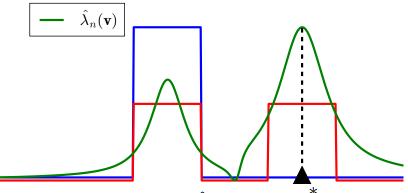
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.



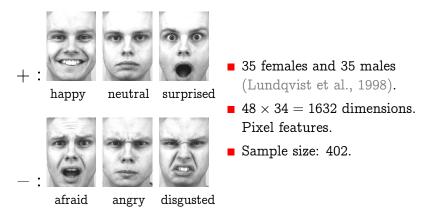
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.



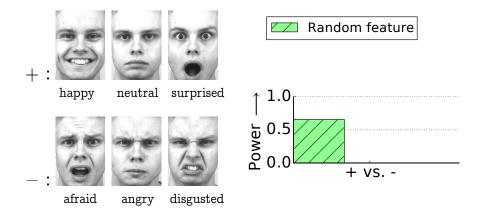
- Variance at $\mathbf{v} = \text{variance of } X \text{ at } \mathbf{v} + \text{variance of } Y \text{ at } \mathbf{v}$.
- ME Statistic: $\hat{\lambda}_n(\mathbf{v}) := n \frac{\text{witness}^2(\mathbf{v})}{\text{variance of } \mathbf{v}}$.



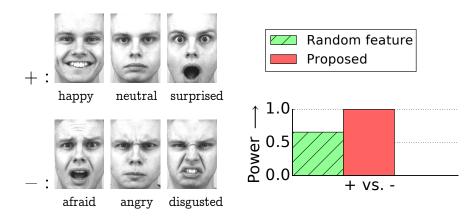
- Best location is \mathbf{v}^* that maximizes $\hat{\lambda}_n$.
- Improve performance using multiple locations $\{\mathbf{v}_j^*\}_{j=1}^J$



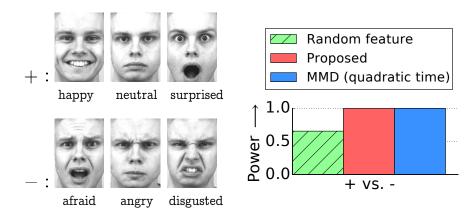
- The proposed test achieves maximum test power in time O(n)
- Informative features: differences at the nose, and smile lines.



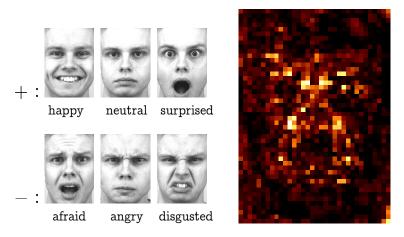
- The proposed test achieves maximum test power in time O(n).
- Informative features: differences at the nose, and smile lines.



- The proposed test achieves maximum test power in time O(n).
- Informative features: differences at the nose, and smile lines.

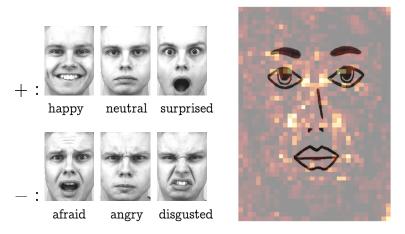


- The proposed test achieves maximum test power in time O(n).
- Informative features: differences at the nose, and smile lines.



Learned feature

- The proposed test achieves maximum test power in time O(n).
- Informative features: differences at the nose, and smile lines.



Learned feature

- The proposed test achieves maximum test power in time O(n).
- Informative features: differences at the nose, and smile lines.

Final thoughts

Witness function approaches:

- MMD test uses pairwise similarities between all samples
- ME test uses similarities to J reference features

Co-authors

Students and postdocs:

- Kacper Chwialkowski (at Voleon)
- Wittawat Jitkrittum
- Heiko Strathmann
- Dougal Sutherland

Collaborators

- Kenji Fukumizu
- Krikamol Muandet
- Bernhard Schoelkopf
- Bharath Sriperumbudur
- Zoltan Szabo

Questions?