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Abstract

Recent experimental studies have focused on the specialization of different neural
structures for different types of instrumental behavior. Recent theoretical work
has provided normative accounts for why there should be more than one control
system, and how the output of different controllers can be integrated. Two par-
ticlar controllers have been identified, one associated with a forward model and
the prefrontal cortex and a second associated with computationally simpler, habit-
ual, actor-critic methods and part of the striatum. We argue here for the normative
appropriateness of an additional, but so far marginalized control system, associ-
ated with episodic memory, and involving the hippocampus and medial temporal
cortices. We analyze in depth a class of simple environments to show that episodic
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Abstract. This paper introduces the application of gradient descent
methods to meta-learning. The concept of “meta-learning”, i.e. of a sys-
tem that improves or discovers a learning algorithm, has been of in-
terest in machine learning for decades because of its appealing applica-
tions. Previous meta-learning approaches have been based on evolution-
ary methods and, therefore, have been restricted to small models with
few free parameters. We make meta-learning in large systems feasible by
using recurrent neural networks with their attendant learning routines
as meta-learning systems. Our system derived complex well performing
learning algorithms from scratch. In this paper we also show that our
approach performs non-stationary time series prediction.

1 Introduction
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See also:

Barraclough et al., Nat. Neuro. 2004
Seo & Lee, J. Neurosci 2007

Shima & Tanji, Science 1998
Matsumoto et al., Nat. Neuro. 2007
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Effects of past outcome and choice on next choice
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